Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
# Download the model from Hugging Face hub
|
8 |
+
model_filename = hf_hub_download(repo_id="poudel/Job_Predictor", filename="random_forest_pipeline.pkl")
|
9 |
+
|
10 |
+
# Load the model
|
11 |
+
loaded_model = joblib.load(model_filename)
|
12 |
+
|
13 |
+
# Download the dataset from Hugging Face hub
|
14 |
+
data_filename = hf_hub_download(repo_id="poudel/Job_Predictor", filename="cleaned_erecruit_open_data.xlsx")
|
15 |
+
|
16 |
+
# Load the dataset
|
17 |
+
data = pd.read_excel(data_filename)
|
18 |
+
|
19 |
+
# Get unique values for dropdowns
|
20 |
+
position_titles = data['PositionTitle'].unique().tolist()
|
21 |
+
designations = data['Designation'].unique().tolist()
|
22 |
+
agencies = data['Agency'].unique().tolist()
|
23 |
+
vacancy_types = data['VacancyType'].unique().tolist()
|
24 |
+
employment_categories = data['EmploymentCategory'].unique().tolist()
|
25 |
+
locations = data['Locations'].unique().tolist()
|
26 |
+
vacancy_6_months_or_less = data['Vacancy6MonthsOrLess'].unique().tolist()
|
27 |
+
|
28 |
+
# Define a function to make predictions based on user input
|
29 |
+
def predict_applicants(position_title, designation, agency, vacancy_type, employment_category, location, vacancy_6_months_or_less, number_of_vacancies, number_of_successful_applicants):
|
30 |
+
# Create a DataFrame from the inputs
|
31 |
+
input_data = pd.DataFrame({
|
32 |
+
'PositionTitle': [position_title],
|
33 |
+
'Designation': [designation],
|
34 |
+
'Agency': [agency],
|
35 |
+
'VacancyType': [vacancy_type],
|
36 |
+
'EmploymentCategory': [employment_category],
|
37 |
+
'Locations': [location],
|
38 |
+
'Vacancy6MonthsOrLess': [vacancy_6_months_or_less],
|
39 |
+
'NumberOfSuccessfulApplicants': [number_of_successful_applicants],
|
40 |
+
'NumberOfVacancies': [number_of_vacancies]
|
41 |
+
})
|
42 |
+
|
43 |
+
# Calculate additional features
|
44 |
+
input_data['Success_Ratio'] = input_data['NumberOfSuccessfulApplicants'] / input_data['NumberOfVacancies'].replace(0, np.nan)
|
45 |
+
input_data['Applicants_per_Vacancy'] = input_data['NumberOfVacancies'] / np.where(input_data['NumberOfSuccessfulApplicants'] == 0, np.nan, input_data['NumberOfSuccessfulApplicants'])
|
46 |
+
input_data['Success_Ratio'].fillna(0, inplace=True)
|
47 |
+
input_data['Applicants_per_Vacancy'].fillna(0, inplace=True)
|
48 |
+
|
49 |
+
# Make predictions using the loaded model pipeline
|
50 |
+
try:
|
51 |
+
prediction = loaded_model.predict(input_data)
|
52 |
+
return f"Predicted Number of Applicants: {int(prediction[0])}"
|
53 |
+
except Exception as e:
|
54 |
+
return f"Error during prediction: {str(e)}"
|
55 |
+
|
56 |
+
# Create the Gradio Blocks Interface
|
57 |
+
with gr.Blocks() as interface:
|
58 |
+
# Add a title and description
|
59 |
+
gr.Markdown("# NT's Job Predictor")
|
60 |
+
gr.Markdown("Select the job details below to predict the number of applicants for a given position.")
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
position_title_input = gr.Dropdown(choices=position_titles, label="Position Title", value=None)
|
64 |
+
designation_input = gr.Dropdown(choices=designations, label="Designation", value=None)
|
65 |
+
agency_input = gr.Dropdown(choices=agencies, label="Agency", value=None)
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
vacancy_type_input = gr.Dropdown(choices=vacancy_types, label="Vacancy Type", value=None)
|
69 |
+
employment_category_input = gr.Dropdown(choices=employment_categories, label="Employment Category", value=None)
|
70 |
+
location_input = gr.Dropdown(choices=locations, label="Locations", value=None)
|
71 |
+
vacancy_6_months_or_less_input = gr.Dropdown(choices=vacancy_6_months_or_less, label="Vacancy 6 Months or Less", value=None)
|
72 |
+
|
73 |
+
with gr.Row():
|
74 |
+
number_of_vacancies_input = gr.Number(label="Past Number of Vacancies", value=None)
|
75 |
+
number_of_successful_applicants_input = gr.Number(label="Past Number of Successful Applicants", value=None)
|
76 |
+
|
77 |
+
predict_button = gr.Button("Predict")
|
78 |
+
|
79 |
+
predicted_applicants_output = gr.Textbox(label="Predicted Number of Applicants")
|
80 |
+
|
81 |
+
predict_button.click(
|
82 |
+
fn=predict_applicants,
|
83 |
+
inputs=[
|
84 |
+
position_title_input,
|
85 |
+
designation_input,
|
86 |
+
agency_input,
|
87 |
+
vacancy_type_input,
|
88 |
+
employment_category_input,
|
89 |
+
location_input,
|
90 |
+
vacancy_6_months_or_less_input,
|
91 |
+
number_of_vacancies_input,
|
92 |
+
number_of_successful_applicants_input
|
93 |
+
],
|
94 |
+
outputs=predicted_applicants_output
|
95 |
+
)
|
96 |
+
|
97 |
+
interface.launch()
|