poudel commited on
Commit
c214d05
·
verified ·
1 Parent(s): 21143cd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -16,7 +16,6 @@ data_filename = hf_hub_download(repo_id="poudel/Job_Predictor", filename="cleane
16
  # Load the CSV dataset
17
  data = pd.read_csv(data_filename)
18
 
19
-
20
  # Get unique values for dropdowns
21
  position_titles = data['PositionTitle'].unique().tolist()
22
  designations = data['Designation'].unique().tolist()
@@ -44,8 +43,10 @@ def predict_applicants(position_title, designation, agency, vacancy_type, employ
44
  # Calculate additional features
45
  input_data['Success_Ratio'] = input_data['NumberOfSuccessfulApplicants'] / input_data['NumberOfVacancies'].replace(0, np.nan)
46
  input_data['Applicants_per_Vacancy'] = input_data['NumberOfVacancies'] / np.where(input_data['NumberOfSuccessfulApplicants'] == 0, np.nan, input_data['NumberOfSuccessfulApplicants'])
47
- input_data['Success_Ratio'].fillna(0, inplace=True)
48
- input_data['Applicants_per_Vacancy'].fillna(0, inplace=True)
 
 
49
 
50
  # Make predictions using the loaded model pipeline
51
  try:
 
16
  # Load the CSV dataset
17
  data = pd.read_csv(data_filename)
18
 
 
19
  # Get unique values for dropdowns
20
  position_titles = data['PositionTitle'].unique().tolist()
21
  designations = data['Designation'].unique().tolist()
 
43
  # Calculate additional features
44
  input_data['Success_Ratio'] = input_data['NumberOfSuccessfulApplicants'] / input_data['NumberOfVacancies'].replace(0, np.nan)
45
  input_data['Applicants_per_Vacancy'] = input_data['NumberOfVacancies'] / np.where(input_data['NumberOfSuccessfulApplicants'] == 0, np.nan, input_data['NumberOfSuccessfulApplicants'])
46
+
47
+ # Avoid inplace modification, return to the column
48
+ input_data['Success_Ratio'] = input_data['Success_Ratio'].fillna(0)
49
+ input_data['Applicants_per_Vacancy'] = input_data['Applicants_per_Vacancy'].fillna(0)
50
 
51
  # Make predictions using the loaded model pipeline
52
  try: