Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,6 @@ data_filename = hf_hub_download(repo_id="poudel/Job_Predictor", filename="cleane
|
|
16 |
# Load the CSV dataset
|
17 |
data = pd.read_csv(data_filename)
|
18 |
|
19 |
-
|
20 |
# Get unique values for dropdowns
|
21 |
position_titles = data['PositionTitle'].unique().tolist()
|
22 |
designations = data['Designation'].unique().tolist()
|
@@ -44,8 +43,10 @@ def predict_applicants(position_title, designation, agency, vacancy_type, employ
|
|
44 |
# Calculate additional features
|
45 |
input_data['Success_Ratio'] = input_data['NumberOfSuccessfulApplicants'] / input_data['NumberOfVacancies'].replace(0, np.nan)
|
46 |
input_data['Applicants_per_Vacancy'] = input_data['NumberOfVacancies'] / np.where(input_data['NumberOfSuccessfulApplicants'] == 0, np.nan, input_data['NumberOfSuccessfulApplicants'])
|
47 |
-
|
48 |
-
|
|
|
|
|
49 |
|
50 |
# Make predictions using the loaded model pipeline
|
51 |
try:
|
|
|
16 |
# Load the CSV dataset
|
17 |
data = pd.read_csv(data_filename)
|
18 |
|
|
|
19 |
# Get unique values for dropdowns
|
20 |
position_titles = data['PositionTitle'].unique().tolist()
|
21 |
designations = data['Designation'].unique().tolist()
|
|
|
43 |
# Calculate additional features
|
44 |
input_data['Success_Ratio'] = input_data['NumberOfSuccessfulApplicants'] / input_data['NumberOfVacancies'].replace(0, np.nan)
|
45 |
input_data['Applicants_per_Vacancy'] = input_data['NumberOfVacancies'] / np.where(input_data['NumberOfSuccessfulApplicants'] == 0, np.nan, input_data['NumberOfSuccessfulApplicants'])
|
46 |
+
|
47 |
+
# Avoid inplace modification, return to the column
|
48 |
+
input_data['Success_Ratio'] = input_data['Success_Ratio'].fillna(0)
|
49 |
+
input_data['Applicants_per_Vacancy'] = input_data['Applicants_per_Vacancy'].fillna(0)
|
50 |
|
51 |
# Make predictions using the loaded model pipeline
|
52 |
try:
|