|
|
|
|
|
import os |
|
import uuid |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
DESCRIPTION = """# Playground v2.5""" |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>" |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
"playgroundai/playground-v2.5-1024px-aesthetic", |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
add_watermarker=False, |
|
variant="fp16" |
|
) |
|
pipe.to(device) |
|
|
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
@spaces.GPU(enable_queue=True) |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 3, |
|
randomize_seed: bool = False, |
|
): |
|
pipe.to(device) |
|
seed = random.randint(0, np.iinfo(np.int32).max) if randomize_seed else seed |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
images = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt if use_negative_prompt else None, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=25, |
|
generator=generator, |
|
).images |
|
|
|
image_paths = [save_image(img) for img in images] |
|
return image_paths, seed |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt") |
|
run_button = gr.Button("Run") |
|
result = gr.Gallery(label="Result") |
|
with gr.Accordion("Advanced options", open=False): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) |
|
negative_prompt = gr.Textbox(label="Negative prompt") |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=0) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=32, value=1024) |
|
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=32, value=1024) |
|
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20, step=0.1, value=3.0) |
|
|
|
gr.on( |
|
triggers=[prompt.submit, negative_prompt.submit, run_button.click], |
|
fn=generate, |
|
inputs=[prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, randomize_seed], |
|
outputs=[result, seed], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|
|
|