Sanket
commited on
Commit
·
98989c5
1
Parent(s):
ed18734
increased input features
Browse files
app.py
CHANGED
@@ -6,18 +6,20 @@ from PIL import Image
|
|
6 |
|
7 |
norm_layer = nn.InstanceNorm2d
|
8 |
|
|
|
9 |
class ResidualBlock(nn.Module):
|
10 |
def __init__(self, in_features):
|
11 |
super(ResidualBlock, self).__init__()
|
12 |
|
13 |
-
conv_block = [
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
self.conv_block = nn.Sequential(*conv_block)
|
23 |
|
@@ -30,22 +32,26 @@ class Generator(nn.Module):
|
|
30 |
super(Generator, self).__init__()
|
31 |
|
32 |
# Initial convolution block
|
33 |
-
model0 = [
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
self.model0 = nn.Sequential(*model0)
|
38 |
|
39 |
# Downsampling
|
40 |
model1 = []
|
41 |
in_features = 256
|
42 |
-
out_features = in_features*2
|
43 |
for _ in range(2):
|
44 |
-
model1 += [
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
in_features = out_features
|
48 |
-
out_features = in_features*2
|
49 |
self.model1 = nn.Sequential(*model1)
|
50 |
|
51 |
model2 = []
|
@@ -56,18 +62,21 @@ class Generator(nn.Module):
|
|
56 |
|
57 |
# Upsampling
|
58 |
model3 = []
|
59 |
-
out_features = in_features//2
|
60 |
for _ in range(2):
|
61 |
-
model3 += [
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
in_features = out_features
|
65 |
-
out_features = in_features//2
|
66 |
self.model3 = nn.Sequential(*model3)
|
67 |
|
68 |
# Output layer
|
69 |
-
model4 = [
|
70 |
-
nn.Conv2d(64, output_nc, 7)]
|
71 |
if sigmoid:
|
72 |
model4 += [nn.Sigmoid()]
|
73 |
|
@@ -82,23 +91,27 @@ class Generator(nn.Module):
|
|
82 |
|
83 |
return out
|
84 |
|
|
|
85 |
model1 = Generator(3, 1, 3)
|
86 |
-
model1.load_state_dict(torch.load(
|
87 |
model1.eval()
|
88 |
|
89 |
model2 = Generator(3, 1, 3)
|
90 |
-
model2.load_state_dict(torch.load(
|
91 |
model2.eval()
|
92 |
|
|
|
93 |
def predict(input_img, ver):
|
94 |
input_img = Image.open(input_img)
|
95 |
-
transform = transforms.Compose(
|
|
|
|
|
96 |
input_img = transform(input_img)
|
97 |
input_img = torch.unsqueeze(input_img, 0)
|
98 |
|
99 |
drawing = 0
|
100 |
with torch.no_grad():
|
101 |
-
if ver ==
|
102 |
drawing = model2(input_img)[0].detach()
|
103 |
else:
|
104 |
drawing = model1(input_img)[0].detach()
|
@@ -106,14 +119,30 @@ def predict(input_img, ver):
|
|
106 |
drawing = transforms.ToPILImage()(drawing)
|
107 |
return drawing
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
[
|
|
|
|
|
|
|
|
|
113 |
]
|
114 |
|
115 |
-
iface = gr.Interface(
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
iface.launch()
|
|
|
6 |
|
7 |
norm_layer = nn.InstanceNorm2d
|
8 |
|
9 |
+
|
10 |
class ResidualBlock(nn.Module):
|
11 |
def __init__(self, in_features):
|
12 |
super(ResidualBlock, self).__init__()
|
13 |
|
14 |
+
conv_block = [
|
15 |
+
nn.ReflectionPad2d(1),
|
16 |
+
nn.Conv2d(in_features, in_features, 3),
|
17 |
+
norm_layer(in_features),
|
18 |
+
nn.ReLU(inplace=True),
|
19 |
+
nn.ReflectionPad2d(1),
|
20 |
+
nn.Conv2d(in_features, in_features, 3),
|
21 |
+
norm_layer(in_features),
|
22 |
+
]
|
23 |
|
24 |
self.conv_block = nn.Sequential(*conv_block)
|
25 |
|
|
|
32 |
super(Generator, self).__init__()
|
33 |
|
34 |
# Initial convolution block
|
35 |
+
model0 = [
|
36 |
+
nn.ReflectionPad2d(3),
|
37 |
+
nn.Conv2d(input_nc, 256, 7),
|
38 |
+
norm_layer(256),
|
39 |
+
nn.ReLU(inplace=True),
|
40 |
+
]
|
41 |
self.model0 = nn.Sequential(*model0)
|
42 |
|
43 |
# Downsampling
|
44 |
model1 = []
|
45 |
in_features = 256
|
46 |
+
out_features = in_features * 2
|
47 |
for _ in range(2):
|
48 |
+
model1 += [
|
49 |
+
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
50 |
+
norm_layer(out_features),
|
51 |
+
nn.ReLU(inplace=True),
|
52 |
+
]
|
53 |
in_features = out_features
|
54 |
+
out_features = in_features * 2
|
55 |
self.model1 = nn.Sequential(*model1)
|
56 |
|
57 |
model2 = []
|
|
|
62 |
|
63 |
# Upsampling
|
64 |
model3 = []
|
65 |
+
out_features = in_features // 2
|
66 |
for _ in range(2):
|
67 |
+
model3 += [
|
68 |
+
nn.ConvTranspose2d(
|
69 |
+
in_features, out_features, 3, stride=2, padding=1, output_padding=1
|
70 |
+
),
|
71 |
+
norm_layer(out_features),
|
72 |
+
nn.ReLU(inplace=True),
|
73 |
+
]
|
74 |
in_features = out_features
|
75 |
+
out_features = in_features // 2
|
76 |
self.model3 = nn.Sequential(*model3)
|
77 |
|
78 |
# Output layer
|
79 |
+
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(256, output_nc, 7)]
|
|
|
80 |
if sigmoid:
|
81 |
model4 += [nn.Sigmoid()]
|
82 |
|
|
|
91 |
|
92 |
return out
|
93 |
|
94 |
+
|
95 |
model1 = Generator(3, 1, 3)
|
96 |
+
model1.load_state_dict(torch.load("model.pth", map_location=torch.device("cpu")))
|
97 |
model1.eval()
|
98 |
|
99 |
model2 = Generator(3, 1, 3)
|
100 |
+
model2.load_state_dict(torch.load("model2.pth", map_location=torch.device("cpu")))
|
101 |
model2.eval()
|
102 |
|
103 |
+
|
104 |
def predict(input_img, ver):
|
105 |
input_img = Image.open(input_img)
|
106 |
+
transform = transforms.Compose(
|
107 |
+
[transforms.Resize(1080, Image.BICUBIC), transforms.ToTensor()]
|
108 |
+
)
|
109 |
input_img = transform(input_img)
|
110 |
input_img = torch.unsqueeze(input_img, 0)
|
111 |
|
112 |
drawing = 0
|
113 |
with torch.no_grad():
|
114 |
+
if ver == "Simple Lines":
|
115 |
drawing = model2(input_img)[0].detach()
|
116 |
else:
|
117 |
drawing = model1(input_img)[0].detach()
|
|
|
119 |
drawing = transforms.ToPILImage()(drawing)
|
120 |
return drawing
|
121 |
|
122 |
+
|
123 |
+
title = "Image to Line Drawings - Complex and Simple Portraits and Landscapes"
|
124 |
+
examples = [
|
125 |
+
["01.jpg", "Complex Lines"],
|
126 |
+
["02.jpg", "Simple Lines"],
|
127 |
+
["03.jpg", "Simple Lines"],
|
128 |
+
["04.jpg", "Simple Lines"],
|
129 |
+
["05.jpg", "Simple Lines"],
|
130 |
]
|
131 |
|
132 |
+
iface = gr.Interface(
|
133 |
+
predict,
|
134 |
+
[
|
135 |
+
gr.inputs.Image(type="filepath"),
|
136 |
+
gr.inputs.Radio(
|
137 |
+
["Complex Lines", "Simple Lines"],
|
138 |
+
type="value",
|
139 |
+
default="Simple Lines",
|
140 |
+
label="version",
|
141 |
+
),
|
142 |
+
],
|
143 |
+
gr.outputs.Image(type="pil"),
|
144 |
+
title=title,
|
145 |
+
examples=examples,
|
146 |
+
)
|
147 |
|
148 |
iface.launch()
|