pp3232133's picture
Update app.py
b941105
raw
history blame
1.61 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Wczytanie tokena z pliku konfiguracyjnego
with open("config.txt", "r") as f:
lines = f.readlines()
config = {}
for line in lines:
key, value = line.strip().split(" = ")
config[key] = value
repo_id = config["repo_id"]
repo_type = config["repo_type"]
token = config["token"]
# Utworzenie folderu Hugging Face z tokenem uwierzytelniającym
hf_folder = HfFolder(repo_id, repo_type, token=token)
# Wczytanie modelu chatbota z Hugging Face
model_name = "pp3232133/distilgpt2-wikitext2"
tokenizer = AutoTokenizer.from_pretrained(model_name, repo_path=hf_folder)
model = AutoModelForCausalLM.from_pretrained(model_name, repo_path=hf_folder)
# Wczytanie własnego modelu chatbota z Hugging Face
model_name = "pp3232133/pp3232133-distilgpt2-wikitext2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Funkcja obsługująca wejście i wyjście dla interfejsu Gradio
def chatbot_interface(input_text):
input_ids = tokenizer.encode(input_text, return_tensors="pt")
chatbot_output = model.generate(input_ids, max_length=100)[0]
response = tokenizer.decode(chatbot_output, skip_special_tokens=True)
return response
# Interfejs Gradio dla chatbota
iface = gr.Interface(
fn=chatbot_interface,
inputs="text",
outputs="text",
title="Chatbot",
description="Custom chatbot based on your Hugging Face model. Start typing to chat with the bot.",
theme="compact"
)
# Uruchomienie interfejsu
iface.launch()