import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Wczytanie tokena z pliku konfiguracyjnego with open("config.txt", "r") as f: lines = f.readlines() config = {} for line in lines: key, value = line.strip().split(" = ") config[key] = value repo_id = config["repo_id", ""] repo_type = config["repo_type", ""] token = config["token", ""] # Utworzenie folderu Hugging Face z tokenem uwierzytelniającym hf_folder = HfFolder(repo_id, repo_type, token=token) # Wczytanie własnego modelu chatbota z Hugging Face if model_name == "pp3232133/pp3232133-distilgpt2-wikitext2" tokenizer = AutoTokenizer.from_pretrained(model_name, repo_path=hf_folder) model = AutoModelForCausalLM.from_pretrained(model_name, repo_path=hf_folder) # Funkcja obsługująca wejście i wyjście dla interfejsu Gradio def chatbot_interface(input_text): input_ids = tokenizer.encode(input_text, return_tensors="pt") chatbot_output = model.generate(input_ids, max_length=100)[0] response = tokenizer.decode(chatbot_output, skip_special_tokens=True) return response # Interfejs Gradio dla chatbota iface = gr.Interface( fn=chatbot_interface, inputs="text", outputs="text", title="Chatbot", description="Custom chatbot based on your Hugging Face model. Start typing to chat with the bot.", theme="compact" ) # Uruchomienie interfejsu iface.launch() else: print("Nie można znaleźć nazwy modelu w pliku konfiguracyjnym.")