import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Wczytanie tokena z pliku konfiguracyjnego with open("config.txt", "r") as f: lines = f.readlines() config = {} for line in lines: if "=" in line: key, value = line.strip().split(" = ") config[key] = value model_name = config.get("repo_id", "") token = config.get("token", "") # Wczytanie własnego modelu chatbota z Hugging Face if model_name == "pp3232133/pp3232133-distilgpt2-wikitext2": tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Funkcja obsługująca wejście i wyjście dla interfejsu Gradio def chatbot_interface(input_text): input_ids = tokenizer.encode(input_text, return_tensors="pt") chatbot_output = model.generate(input_ids, max_length=100)[0] response = tokenizer.decode(chatbot_output, skip_special_tokens=True) return response # Interfejs Gradio dla chatbota iface = gr.Interface( fn=chatbot_interface, inputs="text", outputs="text", title="Chatbot", description="Custom chatbot based on your Hugging Face model. Start typing to chat with the bot.", theme="compact" ) # Uruchomienie interfejsu iface.launch() else: print("Nie można znaleźć nazwy modelu w pliku konfiguracyjnym.")