Spaces:
Building
on
CPU Upgrade
Building
on
CPU Upgrade
File size: 13,378 Bytes
ce70f59 0a96a85 1e86849 ce70f59 0a96a85 ce70f59 1e86849 ce70f59 75af700 ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 8c94b6d ce70f59 0a96a85 ce70f59 0a96a85 ce70f59 0a96a85 ce70f59 0a96a85 ce70f59 0a96a85 ce70f59 0a96a85 ce70f59 0a96a85 ce70f59 0a96a85 ce70f59 0a96a85 ce70f59 1e86849 ce70f59 1e86849 ce70f59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
from pathlib import Path
import numpy as np
import gradio as gr
import requests
import json
from transformers import ViTImageProcessor, ViTModel
from PIL import Image
# Store the server's URL
SERVER_URL = "https://ppaihack-match.azurewebsites.net/"
CURRENT_DIR = Path(__file__).parent
DEPLOYMENT_DIR = CURRENT_DIR / "deployment_files"
KEYS_DIR = DEPLOYMENT_DIR / ".fhe_keys"
CLIENT_DIR = DEPLOYMENT_DIR / "client_dir"
SERVER_DIR = DEPLOYMENT_DIR / "server_dir"
USER_ID = "user_id"
EXAMPLE_CLINICAL_TRIAL_LINK = "https://www.trials4us.co.uk/ongoing-clinical-trials/recruiting-healthy-adults-c23026?_gl=1*1ysp815*_up*MQ..&gclid=Cj0KCQjwr9m3BhDHARIsANut04bHqi5zE3sjS3f8JK2WRN3YEgY4bTfWbvTdZTxkUTSISxXX5ZWL7qEaAowwEALw_wcB&gbraid=0AAAAAD3Qci2k_3IERmM6U1FGDuYVayZWH"
# Define possible categories for fields without predefined categories
additional_categories = {
"Gender": ["Male", "Female", "Other"],
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"],
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"],
"Smoking_Status": ["Never", "Former", "Current"],
"Diagnoses_ICD10": ["Actinic keratosis", "Melanoma", "Dermatofibroma", "Vascular lesion","None"],
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"],
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"],
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"],
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"],
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"],
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"],
"Functional_Status": ["Independent", "Assisted", "Dependent"],
"Previous_Trial_Participation": ["Yes", "No"]
}
# Define the input components for the form
age_input = gr.Slider(minimum=18, maximum=100, label="Age ", step=1, value=30)
gender_input = gr.Radio(choices=additional_categories["Gender"], label="Gender", value="Male")
ethnicity_input = gr.Radio(choices=additional_categories["Ethnicity"], label="Ethnicity", value="White")
geographic_location_input = gr.Radio(choices=additional_categories["Geographic_Location"], label="Geographic Location", value="North America")
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications", value=["Metformin"])
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies", value=["Peanuts"])
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments", value=["None"])
blood_glucose_level_input = gr.Slider(minimum=0, maximum=300, label="Blood Glucose Level", step=1, value=100)
blood_pressure_systolic_input = gr.Slider(minimum=80, maximum=200, label="Blood Pressure (Systolic)", step=1, value=120)
blood_pressure_diastolic_input = gr.Slider(minimum=40, maximum=120, label="Blood Pressure (Diastolic)", step=1, value=80)
bmi_input = gr.Slider(minimum=10, maximum=50, label="BMI ", step=1, value=20)
smoking_status_input = gr.Radio(choices=additional_categories["Smoking_Status"], label="Smoking Status", value="Never")
alcohol_consumption_input = gr.Radio(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption", value="None")
exercise_habits_input = gr.Radio(choices=additional_categories["Exercise_Habits"], label="Exercise Habits", value="Sedentary")
diet_input = gr.Radio(choices=additional_categories["Diet"], label="Diet", value="Omnivore")
condition_severity_input = gr.Slider(minimum=1, maximum=10, label="Condition Severity", step=1, value=5)
functional_status_input = gr.Radio(choices=additional_categories["Functional_Status"], label="Functional Status", value="Independent")
previous_trial_participation_input = gr.Radio(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation", value="No")
# def encrypt_array(user_symptoms: np.ndarray, user_id: str) -> bytes:
# """
# Encrypt the user symptoms vector.
# Args:
# user_symptoms (np.ndarray): The vector of symptoms provided by the user.
# user_id (str): The current user's ID.
# Returns:
# bytes: Encrypted and serialized symptoms.
# """
# # Retrieve the client API
# client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
# client.load()
# # Ensure the symptoms are properly formatted as an array
# user_symptoms = np.array(user_symptoms).reshape(1, -1)
# # Encrypt and serialize the symptoms
# encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
# # Ensure the encryption process returned bytes
# assert isinstance(encrypted_quantized_user_symptoms, bytes)
# # Save the encrypted data to a file (optional)
# encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input"
# with encrypted_input_path.open("wb") as f:
# f.write(encrypted_quantized_user_symptoms)
# # Return the encrypted data
# return encrypted_quantized_user_symptoms
# def decrypt_result(encrypted_answer: bytes, user_id: str) -> bool:
"""
Decrypt the encrypted result.
Args:
encrypted_answer (bytes): The encrypted result.
user_id (str): The current user's ID.
Returns:
bool: The decrypted result.
"""
# Retrieve the client API
# client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
# client.load()
# Decrypt the result
# decrypted_result = client.decrypt_deserialize(encrypted_answer)
# # Return the decrypted result
# return decrypted_result
def encode_categorical_data(data):
categories = ["Gender", "Ethnicity", "Geographic_Location", "Diagnoses_ICD10", "Medications", "Allergies", "Previous_Treatments", "Smoking_Status", "Alcohol_Consumption", "Exercise_Habits", "Diet", "Functional_Status", "Previous_Trial_Participation"]
encoded_data = []
for i in range(len(categories)):
sub_cats = additional_categories[categories[i]]
if data[i] in sub_cats:
encoded_data.append(sub_cats.index(data[i]) + 1)
else:
encoded_data.append(0)
return encoded_data
def clear_data_to_json(data):
print(data)
patient_data = {
"model_names": ["my_model"],
"patient": {
"Age": data.get("age", 30),
"Blood_Glucose_Level": data.get("blood_glucose_level", 0),
"Blood_Pressure_Systolic": data.get("blood_pressure_systolic", 0),
"Blood_Pressure_Diastolic": data.get("blood_pressure_diastolic", 0),
"BMI": data.get("bmi", 0),
"Condition_Severity": data.get("condition_severity", 0),
"Gender": data.get("Gender", 0),
"Ethnicity": data.get("Ethnicity", 0),
"Geographic_Location": data.get("Geographic_Location", 0),
"Smoking_Status": data.get("Smoking_Status", 0),
"Diagnoses_ICD10": data.get("Diagnoses_ICD10", 0),
"Medications": data.get("Medications", 0),
"Allergies": data.get("Allergies", 0),
"Previous_Treatments": data.get("Previous_Treatments", 0),
"Alcohol_Consumption": data.get("Alcohol_Consumption", 0),
"Exercise_Habits": data.get("Exercise_Habits", 0),
"Diet": data.get("Diet", 0),
"Functional_Status": data.get("Functional_Status", 0),
"Previous_Trial_Participation": data.get("Previous_Trial_Participation", 0)
}
}
return json.dumps(patient_data, indent=4)
def process_patient_data(age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, smoking_status, alcohol_consumption, exercise_habits, diet, condition_severity, functional_status, previous_trial_participation):
# Encode the data
categorical_data = [gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, smoking_status, alcohol_consumption, exercise_habits, diet, functional_status, previous_trial_participation]
print(f"Categorical data: {categorical_data}")
encoded_categorical_data = encode_categorical_data(categorical_data)
numerical_data = np.array([age, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, condition_severity])
print(f"Numerical data: {numerical_data}")
print(f"One-hot encoded data: {encoded_categorical_data}")
combined_data = np.hstack((numerical_data, encoded_categorical_data))
ordered_categories = ["Gender", "Ethnicity", "Geographic_Location", "Diagnoses_ICD10", "Medications", "Allergies", "Previous_Treatments", "Smoking_Status", "Alcohol_Consumption", "Exercise_Habits", "Diet", "Functional_Status", "Previous_Trial_Participation"]
zipped_data = zip(ordered_categories, encoded_categorical_data)
# Convert the zipped data to a dictionary
encoded_categorical_dict = {category: value for category, value in zipped_data}
# Convert the data to JSON
json_data = clear_data_to_json({
"age": age,
"blood_glucose_level": blood_glucose_level,
"blood_pressure_systolic": blood_pressure_systolic,
"blood_pressure_diastolic": blood_pressure_diastolic,
"bmi": bmi,
"condition_severity": condition_severity,
**encoded_categorical_dict
})
print(f"JSON data: {json_data}")
print(f"Combined data: {combined_data}")
# encrypted_array = encrypt_array(combined_data, "user_id")
# Send the data to the server
url = SERVER_URL + "clear-match"
response = requests.post(url, data=json_data)
# Check if the data was sent successfully
if response.status_code == 200:
print("Data sent successfully.")
else:
print("Error sending data.")
# Decrypt the result
# decrypted_result = decrypt_result(response.content, USER_ID)
print()
decrypted_result = response.json()
# If the answer is True, return the link
if decrypted_result:
return (
# f"Encrypted data: {encrypted_array}",
f"Decrypted result: {response.json()}"
)
else:
return (
# f"Encrypted data: {encrypted_array}",
f"Decrypted result: {response.json()}"
)
# Define the function to handle image upload
def handle_image_upload(image):
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
model = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
pooler_output = outputs.pooler_output[0]
sclaed_output = 127 + 127 * pooler_output / pooler_output.abs().max()
sclaed_output = sclaed_output.to(int)
return ["Melanoma", "Vascular lesion"]
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Patient Data Criteria Form\nPlease fill in the criteria for the type of patients you are looking for.")
with gr.Column():
with gr.Group():
age_input.render()
gender_input.render()
ethnicity_input.render()
geographic_location_input.render()
medications_input.render()
allergies_input.render()
previous_treatments_input.render()
blood_glucose_level_input.render()
blood_pressure_systolic_input.render()
blood_pressure_diastolic_input.render()
bmi_input.render()
smoking_status_input.render()
alcohol_consumption_input.render()
exercise_habits_input.render()
diet_input.render()
condition_severity_input.render()
functional_status_input.render()
previous_trial_participation_input.render()
with gr.Group():
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Skin Diagnosis", interactive=False)
image_input = gr.Image(label="Upload an Image")
gr.Button("Upload").click(handle_image_upload, inputs=image_input, outputs=diagnoses_icd10_input)
with gr.Group():
output = gr.JSON(label="Patient Data JSON")
gr.Button("Submit").click(process_patient_data, inputs=[
age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input, medications_input, allergies_input, previous_treatments_input, blood_glucose_level_input, blood_pressure_systolic_input, blood_pressure_diastolic_input, bmi_input, smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input, condition_severity_input, functional_status_input, previous_trial_participation_input
], outputs=output)
# Launch the app
demo.launch() |