TomSmail's picture
feat: add jsonification
0a96a85
raw
history blame
11.2 kB
from concrete.ml.deployment import FHEModelClient
from pathlib import Path
import numpy as np
import gradio as gr
import requests
import json
# Store the server's URL
SERVER_URL = "https://ppaihack-match.azurewebsites.net/"
CURRENT_DIR = Path(__file__).parent
DEPLOYMENT_DIR = CURRENT_DIR / "deployment_files"
KEYS_DIR = DEPLOYMENT_DIR / ".fhe_keys"
CLIENT_DIR = DEPLOYMENT_DIR / "client_dir"
SERVER_DIR = DEPLOYMENT_DIR / "server_dir"
USER_ID = "user_id"
EXAMPLE_CLINICAL_TRIAL_LINK = "https://www.trials4us.co.uk/ongoing-clinical-trials/recruiting-healthy-adults-c23026?_gl=1*1ysp815*_up*MQ..&gclid=Cj0KCQjwr9m3BhDHARIsANut04bHqi5zE3sjS3f8JK2WRN3YEgY4bTfWbvTdZTxkUTSISxXX5ZWL7qEaAowwEALw_wcB&gbraid=0AAAAAD3Qci2k_3IERmM6U1FGDuYVayZWH"
# Define possible categories for fields without predefined categories
additional_categories = {
"Gender": ["Male", "Female", "Other"],
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"],
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"],
"Smoking_Status": ["Never", "Former", "Current"],
"Diagnoses_ICD10": ["E11.9", "I10", "J45.909", "M54.5", "F32.9", "K21.9"],
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"],
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"],
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"],
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"],
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"],
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"],
"Functional_Status": ["Independent", "Assisted", "Dependent"],
"Previous_Trial_Participation": ["Yes", "No"]
}
# Define the input components for the form
age_input = gr.Slider(minimum=18, maximum=100, label="Age ", step=1)
gender_input = gr.Radio(choices=additional_categories["Gender"], label="Gender")
ethnicity_input = gr.Radio(choices=additional_categories["Ethnicity"], label="Ethnicity")
geographic_location_input = gr.Radio(choices=additional_categories["Geographic_Location"], label="Geographic Location")
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Diagnoses (ICD-10)")
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications")
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies")
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments")
blood_glucose_level_input = gr.Slider(minimum=0, maximum=300, label="Blood Glucose Level", step=1)
blood_pressure_systolic_input = gr.Slider(minimum=80, maximum=200, label="Blood Pressure (Systolic)", step=1)
blood_pressure_diastolic_input = gr.Slider(minimum=40, maximum=120, label="Blood Pressure (Diastolic)", step=1)
bmi_input = gr.Slider(minimum=10, maximum=50, label="BMI ", step=1)
smoking_status_input = gr.Radio(choices=additional_categories["Smoking_Status"], label="Smoking Status")
alcohol_consumption_input = gr.Radio(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption")
exercise_habits_input = gr.Radio(choices=additional_categories["Exercise_Habits"], label="Exercise Habits")
diet_input = gr.Radio(choices=additional_categories["Diet"], label="Diet")
condition_severity_input = gr.Slider(minimum=1, maximum=10, label="Condition Severity", step=1)
functional_status_input = gr.Radio(choices=additional_categories["Functional_Status"], label="Functional Status")
previous_trial_participation_input = gr.Radio(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation")
def encrypt_array(user_symptoms: np.ndarray, user_id: str) -> bytes:
"""
Encrypt the user symptoms vector.
Args:
user_symptoms (np.ndarray): The vector of symptoms provided by the user.
user_id (str): The current user's ID.
Returns:
bytes: Encrypted and serialized symptoms.
"""
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
client.load()
# Ensure the symptoms are properly formatted as an array
user_symptoms = np.array(user_symptoms).reshape(1, -1)
# Encrypt and serialize the symptoms
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
# Ensure the encryption process returned bytes
assert isinstance(encrypted_quantized_user_symptoms, bytes)
# Save the encrypted data to a file (optional)
encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input"
with encrypted_input_path.open("wb") as f:
f.write(encrypted_quantized_user_symptoms)
# Return the encrypted data
return encrypted_quantized_user_symptoms
def decrypt_result(encrypted_answer: bytes, user_id: str) -> bool:
"""
Decrypt the encrypted result.
Args:
encrypted_answer (bytes): The encrypted result.
user_id (str): The current user's ID.
Returns:
bool: The decrypted result.
"""
# Retrieve the client API
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
client.load()
# Decrypt the result
decrypted_result = client.decrypt_deserialize(encrypted_answer)
# Return the decrypted result
return decrypted_result
def encode_categorical_data(data):
categories = ["Gender", "Ethnicity", "Geographic_Location", "Diagnoses_ICD10", "Medications", "Allergies", "Previous_Treatments", "Smoking_Status", "Alcohol_Consumption", "Exercise_Habits", "Diet", "Functional_Status", "Previous_Trial_Participation"]
encoded_data = []
for i in range(len(categories)):
sub_cats = additional_categories[categories[i]]
if data[i] in sub_cats:
encoded_data.append(sub_cats.index(data[i]) + 1)
else:
encoded_data.append(0)
return encoded_data
def clear_data_to_json(data):
print(data)
patient_data = {
"model_names": ["my_model"],
"patient": {
"Age": data.get("age", 30),
"Blood_Glucose_Level": data.get("blood_glucose_level", 0),
"Blood_Pressure_Systolic": data.get("blood_pressure_systolic", 0),
"Blood_Pressure_Diastolic": data.get("blood_pressure_diastolic", 0),
"BMI": data.get("bmi", 0),
"Condition_Severity": data.get("condition_severity", 0),
"Gender": data.get("Gender", 0),
"Ethnicity": data.get("Ethnicity", 0),
"Geographic_Location": data.get("Geographic_Location", 0),
"Smoking_Status": data.get("Smoking_Status", 0),
"Diagnoses_ICD10": data.get("Diagnoses_ICD10", 0),
"Medications": data.get("Medications", 0),
"Allergies": data.get("Allergies", 0),
"Previous_Treatments": data.get("Previous_Treatments", 0),
"Alcohol_Consumption": data.get("Alcohol_Consumption", 0),
"Exercise_Habits": data.get("Exercise_Habits", 0),
"Diet": data.get("Diet", 0),
"Functional_Status": data.get("Functional_Status", 0),
"Previous_Trial_Participation": data.get("Previous_Trial_Participation", 0)
}
}
return json.dumps(patient_data, indent=4)
def process_patient_data(age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, smoking_status, alcohol_consumption, exercise_habits, diet, condition_severity, functional_status, previous_trial_participation):
# Encode the data
categorical_data = [gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, smoking_status, alcohol_consumption, exercise_habits, diet, functional_status, previous_trial_participation]
print(f"Categorical data: {categorical_data}")
encoded_categorical_data = encode_categorical_data(categorical_data)
numerical_data = np.array([age, blood_glucose_level, blood_pressure_systolic, blood_pressure_diastolic, bmi, condition_severity])
print(f"Numerical data: {numerical_data}")
print(f"One-hot encoded data: {encoded_categorical_data}")
combined_data = np.hstack((numerical_data, encoded_categorical_data))
ordered_categories = ["Gender", "Ethnicity", "Geographic_Location", "Diagnoses_ICD10", "Medications", "Allergies", "Previous_Treatments", "Smoking_Status", "Alcohol_Consumption", "Exercise_Habits", "Diet", "Functional_Status", "Previous_Trial_Participation"]
zipped_data = zip(ordered_categories, encoded_categorical_data)
# Convert the zipped data to a dictionary
encoded_categorical_dict = {category: value for category, value in zipped_data}
# Convert the data to JSON
json_data = clear_data_to_json({
"age": age,
"blood_glucose_level": blood_glucose_level,
"blood_pressure_systolic": blood_pressure_systolic,
"blood_pressure_diastolic": blood_pressure_diastolic,
"bmi": bmi,
"condition_severity": condition_severity,
**encoded_categorical_dict
})
print(f"JSON data: {json_data}")
print(f"Combined data: {combined_data}")
# encrypted_array = encrypt_array(combined_data, "user_id")
# Send the data to the server
url = SERVER_URL + "clear-match"
response = requests.post(url, data=json_data)
# Check if the data was sent successfully
if response.status_code == 200:
print("Data sent successfully.")
else:
print("Error sending data.")
# Decrypt the result
# decrypted_result = decrypt_result(response.content, USER_ID)
print()
decrypted_result = response.json()
# If the answer is True, return the link
if decrypted_result:
return (
# f"Encrypted data: {encrypted_array}",
f"Decrypted result: {response.json()}"
)
else:
return (
# f"Encrypted data: {encrypted_array}",
f"Decrypted result: {response.json()}"
)
# Create the Gradio interface
demo = gr.Interface(
fn=process_patient_data,
inputs=[
age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input, medications_input, allergies_input, previous_treatments_input, blood_glucose_level_input, blood_pressure_systolic_input, blood_pressure_diastolic_input, bmi_input, smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input, condition_severity_input, functional_status_input, previous_trial_participation_input
],
outputs="text",
title="Patient Data Criteria Form",
description="Please fill in the criteria for the type of patients you are looking for."
)
# Launch the app
demo.launch()