Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,6 @@ import numpy
|
|
13 |
import pandas as pd
|
14 |
import requests
|
15 |
from fhe_anonymizer import FHEAnonymizer
|
16 |
-
#from openai import OpenAI
|
17 |
from utils_demo import *
|
18 |
|
19 |
from concrete.ml.deployment import FHEModelClient
|
@@ -22,12 +21,10 @@ from models.speech_to_text.transcriber.audio import preprocess_audio
|
|
22 |
from models.speech_to_text.transcriber.model import load_model_and_processor
|
23 |
from models.speech_to_text.transcriber.audio import transcribe_audio
|
24 |
|
25 |
-
|
26 |
# Ensure the directory is clean before starting processes or reading files
|
27 |
clean_directory()
|
28 |
|
29 |
anonymizer = FHEAnonymizer()
|
30 |
-
#client = OpenAI(api_key=os.environ.get("openaikey"))
|
31 |
|
32 |
# Start the Uvicorn server hosting the FastAPI app
|
33 |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
|
@@ -35,43 +32,16 @@ time.sleep(3)
|
|
35 |
|
36 |
# Load data from files required for the application
|
37 |
UUID_MAP = read_json(MAPPING_UUID_PATH)
|
38 |
-
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH)
|
39 |
-
MAPPING_ANONYMIZED_SENTENCES = read_pickle(MAPPING_ANONYMIZED_SENTENCES_PATH)
|
40 |
-
MAPPING_ENCRYPTED_SENTENCES = read_pickle(MAPPING_ENCRYPTED_SENTENCES_PATH)
|
41 |
-
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n")
|
42 |
MAPPING_DOC_EMBEDDING = read_pickle(MAPPING_DOC_EMBEDDING_PATH)
|
43 |
|
44 |
-
print(f"{ORIGINAL_DOCUMENT=}\n")
|
45 |
-
print(f"{MAPPING_DOC_EMBEDDING.keys()=}")
|
46 |
-
|
47 |
-
# 4. Data Processing and Operations (No specific operations shown here, assuming it's part of anonymizer or client usage)
|
48 |
-
|
49 |
-
# 5. Utilizing External Services or APIs
|
50 |
-
# (Assuming client initialization and anonymizer setup are parts of using external services or application-specific logic)
|
51 |
-
|
52 |
# Generate a random user ID for this session
|
53 |
USER_ID = numpy.random.randint(0, 2**32)
|
54 |
|
55 |
-
|
56 |
-
def select_static_anonymized_sentences_fn(selected_sentences: List):
|
57 |
-
|
58 |
-
selected_sentences = [MAPPING_ANONYMIZED_SENTENCES[sentence] for sentence in selected_sentences]
|
59 |
-
|
60 |
-
anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0])
|
61 |
-
|
62 |
-
anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence]
|
63 |
-
|
64 |
-
return "\n\n".join(anonymized_selected_sentence)
|
65 |
-
|
66 |
-
|
67 |
def key_gen_fn() -> Dict:
|
68 |
"""Generate keys for a given user."""
|
69 |
-
|
70 |
print("------------ Step 1: Key Generation:")
|
71 |
-
|
72 |
print(f"Your user ID is: {USER_ID}....")
|
73 |
|
74 |
-
|
75 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
76 |
client.load()
|
77 |
|
@@ -84,70 +54,17 @@ def key_gen_fn() -> Dict:
|
|
84 |
|
85 |
# Save the evaluation key
|
86 |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
87 |
-
|
88 |
write_bytes(evaluation_key_path, serialized_evaluation_keys)
|
89 |
|
90 |
-
# anonymizer.generate_key()
|
91 |
-
|
92 |
if not evaluation_key_path.is_file():
|
93 |
-
error_message = (
|
94 |
-
f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
|
95 |
-
)
|
96 |
print(error_message)
|
97 |
return {gen_key_btn: gr.update(value=error_message)}
|
98 |
else:
|
99 |
print("Keys have been generated ✅")
|
100 |
return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
|
101 |
|
102 |
-
|
103 |
-
def encrypt_doc_fn(doc):
|
104 |
-
|
105 |
-
print(f"\n------------ Step 2.1: Doc encryption: {doc=}")
|
106 |
-
|
107 |
-
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
|
108 |
-
return {encrypted_doc_box: gr.update(value="Error ❌: Please generate the key first!", lines=10)}
|
109 |
-
|
110 |
-
# Retrieve the client API
|
111 |
-
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
112 |
-
client.load()
|
113 |
-
|
114 |
-
encrypted_tokens = []
|
115 |
-
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+|\$\d+(?:\.\d+)?|\€\d+(?:\.\d+)?)", ' '.join(doc))
|
116 |
-
|
117 |
-
for token in tokens:
|
118 |
-
if token.strip() and re.match(r"\w+", token):
|
119 |
-
emb_x = MAPPING_DOC_EMBEDDING[token]
|
120 |
-
assert emb_x.shape == (1, 1024)
|
121 |
-
encrypted_x = client.quantize_encrypt_serialize(emb_x)
|
122 |
-
assert isinstance(encrypted_x, bytes)
|
123 |
-
encrypted_tokens.append(encrypted_x)
|
124 |
-
|
125 |
-
print("Doc encrypted ✅ on Client Side")
|
126 |
-
|
127 |
-
# No need to save it
|
128 |
-
# write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_doc", b"".join(encrypted_tokens))
|
129 |
-
|
130 |
-
encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens]
|
131 |
-
|
132 |
-
return {
|
133 |
-
encrypted_doc_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=10),
|
134 |
-
anonymized_doc_output: gr.update(visible=True, value=None),
|
135 |
-
}
|
136 |
-
|
137 |
-
import presidio_analyzer
|
138 |
-
import presidio_anonymizer
|
139 |
-
from presidio_analyzer import AnalyzerEngine
|
140 |
-
from presidio_anonymizer import AnonymizerEngine
|
141 |
-
|
142 |
-
def anonymization_with_presidio(prompt):
|
143 |
-
analyzer = AnalyzerEngine()
|
144 |
-
anonymizer = AnonymizerEngine()
|
145 |
-
results = analyzer.analyze(text=prompt,language='en')
|
146 |
-
result = anonymizer.anonymize(text=prompt, analyzer_results=results)
|
147 |
-
return result.text
|
148 |
-
|
149 |
def encrypt_query_fn(query):
|
150 |
-
|
151 |
print(f"\n------------ Step 2: Query encryption: {query=}")
|
152 |
|
153 |
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
|
@@ -156,45 +73,29 @@ def encrypt_query_fn(query):
|
|
156 |
if is_user_query_valid(query):
|
157 |
return {
|
158 |
query_box: gr.update(
|
159 |
-
value=
|
160 |
-
"Unable to process ❌: The request exceeds the length limit or falls "
|
161 |
-
"outside the scope of this document. Please refine your query."
|
162 |
-
)
|
163 |
)
|
164 |
}
|
165 |
|
166 |
-
# Retrieve the client API
|
167 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
168 |
client.load()
|
169 |
|
170 |
encrypted_tokens = []
|
171 |
-
|
172 |
-
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
|
173 |
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)
|
174 |
|
175 |
for token in tokens:
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
# 2- Directly append non-word tokens or whitespace to processed_tokens
|
182 |
-
|
183 |
-
# Prediction for each word
|
184 |
-
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
|
185 |
-
encrypted_x = client.quantize_encrypt_serialize(emb_x)
|
186 |
-
assert isinstance(encrypted_x, bytes)
|
187 |
-
|
188 |
-
encrypted_tokens.append(encrypted_x)
|
189 |
|
190 |
print("Data encrypted ✅ on Client Side")
|
191 |
|
192 |
assert len({len(token) for token in encrypted_tokens}) == 1
|
193 |
|
194 |
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input", b"".join(encrypted_tokens))
|
195 |
-
write_bytes(
|
196 |
-
KEYS_DIR / f"{USER_ID}/encrypted_input_len", len(encrypted_tokens[0]).to_bytes(10, "big")
|
197 |
-
)
|
198 |
|
199 |
encrypted_quant_tokens_hex = [token.hex()[500:580] for token in encrypted_tokens]
|
200 |
|
@@ -204,169 +105,76 @@ def encrypt_query_fn(query):
|
|
204 |
identified_words_output_df: gr.update(visible=False, value=None),
|
205 |
}
|
206 |
|
207 |
-
|
208 |
def send_input_fn(query) -> Dict:
|
209 |
-
"""Send the encrypted data and the evaluation key to the server."""
|
210 |
-
|
211 |
print("------------ Step 3.1: Send encrypted_data to the Server")
|
212 |
|
213 |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
214 |
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
|
215 |
encrypted_input_len_path = KEYS_DIR / f"{USER_ID}/encrypted_input_len"
|
216 |
|
217 |
-
if not evaluation_key_path.is_file():
|
218 |
-
error_message =
|
219 |
-
"Error Encountered While Sending Data to the Server: "
|
220 |
-
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
|
221 |
-
)
|
222 |
-
return {anonymized_query_output: gr.update(value=error_message)}
|
223 |
-
|
224 |
-
if not encrypted_input_path.is_file():
|
225 |
-
error_message = (
|
226 |
-
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
|
227 |
-
f"correctly on the client side - {encrypted_input_path.is_file()=}"
|
228 |
-
)
|
229 |
return {anonymized_query_output: gr.update(value=error_message)}
|
230 |
|
231 |
-
# Define the data and files to post
|
232 |
data = {"user_id": USER_ID, "input": query}
|
233 |
-
|
234 |
files = [
|
235 |
("files", open(evaluation_key_path, "rb")),
|
236 |
("files", open(encrypted_input_path, "rb")),
|
237 |
("files", open(encrypted_input_len_path, "rb")),
|
238 |
]
|
239 |
|
240 |
-
# Send the encrypted input and evaluation key to the server
|
241 |
url = SERVER_URL + "send_input"
|
242 |
-
|
243 |
-
with requests.post(
|
244 |
-
url=url,
|
245 |
-
data=data,
|
246 |
-
files=files,
|
247 |
-
) as resp:
|
248 |
print("Data sent to the server ✅" if resp.ok else "Error ❌ in sending data to the server")
|
249 |
|
250 |
-
|
251 |
def run_fhe_in_server_fn() -> Dict:
|
252 |
-
"""Run in FHE the anonymization of the query"""
|
253 |
-
|
254 |
print("------------ Step 3.2: Run in FHE on the Server Side")
|
255 |
|
256 |
-
|
257 |
-
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
|
258 |
-
|
259 |
-
if not evaluation_key_path.is_file():
|
260 |
-
error_message = (
|
261 |
-
"Error Encountered While Sending Data to the Server: "
|
262 |
-
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
|
263 |
-
)
|
264 |
-
return {anonymized_query_output: gr.update(value=error_message)}
|
265 |
-
|
266 |
-
if not encrypted_input_path.is_file():
|
267 |
-
error_message = (
|
268 |
-
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
|
269 |
-
f"correctly on the client side - {encrypted_input_path.is_file()=}"
|
270 |
-
)
|
271 |
-
return {anonymized_query_output: gr.update(value=error_message)}
|
272 |
-
|
273 |
-
data = {
|
274 |
-
"user_id": USER_ID,
|
275 |
-
}
|
276 |
-
|
277 |
url = SERVER_URL + "run_fhe"
|
278 |
|
279 |
-
with requests.post(
|
280 |
-
url=url,
|
281 |
-
data=data,
|
282 |
-
) as response:
|
283 |
if not response.ok:
|
284 |
return {
|
285 |
anonymized_query_output: gr.update(
|
286 |
-
value=
|
287 |
-
"⚠️ An error occurred on the Server Side. "
|
288 |
-
"Please check connectivity and data transmission."
|
289 |
-
),
|
290 |
),
|
291 |
}
|
292 |
else:
|
293 |
time.sleep(1)
|
294 |
print(f"The query anonymization was computed in {response.json():.2f} s per token.")
|
295 |
|
296 |
-
|
297 |
def get_output_fn() -> Dict:
|
298 |
-
|
299 |
print("------------ Step 3.3: Get the output from the Server Side")
|
300 |
|
301 |
-
|
302 |
-
error_message = (
|
303 |
-
"Error Encountered While Sending Data to the Server: "
|
304 |
-
"The key has not been generated correctly"
|
305 |
-
)
|
306 |
-
return {anonymized_query_output: gr.update(value=error_message)}
|
307 |
-
|
308 |
-
if not (KEYS_DIR / f"{USER_ID}/encrypted_input").is_file():
|
309 |
-
error_message = (
|
310 |
-
"Error Encountered While Sending Data to the Server: "
|
311 |
-
"The data has not been encrypted correctly on the client side"
|
312 |
-
)
|
313 |
-
return {anonymized_query_output: gr.update(value=error_message)}
|
314 |
-
|
315 |
-
data = {
|
316 |
-
"user_id": USER_ID,
|
317 |
-
}
|
318 |
-
|
319 |
-
# Retrieve the encrypted output
|
320 |
url = SERVER_URL + "get_output"
|
321 |
-
|
322 |
-
|
323 |
-
data=data,
|
324 |
-
) as response:
|
325 |
if response.ok:
|
326 |
print("Data received ✅ from the remote Server")
|
327 |
response_data = response.json()
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
# Decode the base64 encoded data
|
332 |
-
encrypted_output = base64.b64decode(encrypted_output_base64)
|
333 |
-
length_encrypted_output = base64.b64decode(length_encrypted_output_base64)
|
334 |
-
|
335 |
-
# Save the encrypted output to bytes in a file as it is too large to pass through
|
336 |
-
# regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
337 |
|
338 |
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output", encrypted_output)
|
339 |
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len", length_encrypted_output)
|
340 |
-
|
341 |
else:
|
342 |
-
print("Error ❌ in getting data
|
343 |
-
|
344 |
|
345 |
def decrypt_fn(text) -> Dict:
|
346 |
-
"
|
347 |
|
348 |
-
print("------------ Step 4: Dencrypt the data on the `Client Side`")
|
349 |
-
|
350 |
-
# Get the encrypted output path
|
351 |
encrypted_output_path = CLIENT_DIR / f"{USER_ID}_encrypted_output"
|
352 |
|
353 |
if not encrypted_output_path.is_file():
|
354 |
-
error_message = "
|
355 |
-
- the connectivity \n
|
356 |
-
- the query has been submitted \n
|
357 |
-
- the evaluation key has been generated \n
|
358 |
-
- the server processed the encrypted data \n
|
359 |
-
- the Client received the data from the Server before decrypting the prediction
|
360 |
-
"""
|
361 |
print(error_message)
|
362 |
-
|
363 |
return error_message, None
|
364 |
|
365 |
-
# Retrieve the client API
|
366 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
367 |
client.load()
|
368 |
|
369 |
-
# Load the encrypted output as bytes
|
370 |
encrypted_output = read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output")
|
371 |
length = int.from_bytes(read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len"), "big")
|
372 |
|
@@ -376,11 +184,7 @@ def decrypt_fn(text) -> Dict:
|
|
376 |
|
377 |
i = 0
|
378 |
for token in tokens:
|
379 |
-
|
380 |
-
# Directly append non-word tokens or whitespace to processed_tokens
|
381 |
-
if bool(re.match(r"^\s+$", token)):
|
382 |
-
continue
|
383 |
-
else:
|
384 |
encrypted_token = encrypted_output[i : i + length]
|
385 |
prediction_proba = client.deserialize_decrypt_dequantize(encrypted_token)
|
386 |
probability = prediction_proba[0][1]
|
@@ -388,380 +192,102 @@ def decrypt_fn(text) -> Dict:
|
|
388 |
|
389 |
if probability >= 0.77:
|
390 |
identified_words_with_prob.append((token, probability))
|
391 |
-
|
392 |
-
# Use the existing UUID if available, otherwise generate a new one
|
393 |
tmp_uuid = UUID_MAP.get(token, str(uuid.uuid4())[:8])
|
394 |
decrypted_output.append(tmp_uuid)
|
395 |
UUID_MAP[token] = tmp_uuid
|
396 |
else:
|
397 |
decrypted_output.append(token)
|
398 |
|
399 |
-
|
400 |
-
write_json(MAPPING_UUID_PATH, UUID_MAP)
|
401 |
|
402 |
-
# Removing Spaces Before Punctuation:
|
403 |
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", " ".join(decrypted_output))
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
identified_words_with_prob, columns=["Identified Words", "Probability"]
|
409 |
-
)
|
410 |
-
else:
|
411 |
-
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
|
412 |
|
413 |
print("Decryption done ✅ on Client Side")
|
414 |
|
415 |
return anonymized_text, identified_df
|
416 |
|
417 |
-
|
418 |
-
def anonymization_with_fn(selected_sentences, query):
|
419 |
-
|
420 |
encrypt_query_fn(query)
|
421 |
-
|
422 |
send_input_fn(query)
|
423 |
-
|
424 |
run_fhe_in_server_fn()
|
425 |
-
|
426 |
get_output_fn()
|
427 |
-
|
428 |
anonymized_text, identified_df = decrypt_fn(query)
|
429 |
|
430 |
return {
|
431 |
-
anonymized_doc_output: gr.update(value=select_static_anonymized_sentences_fn(selected_sentences)),
|
432 |
anonymized_query_output: gr.update(value=anonymized_text),
|
433 |
-
identified_words_output_df: gr.update(value=identified_df, visible=
|
434 |
}
|
435 |
|
436 |
-
# Define the folder path containing audio files
|
437 |
-
AUDIO_FOLDER_PATH = "./files/"
|
438 |
-
|
439 |
-
# Function to list available audio files in the folder
|
440 |
-
def get_audio_files():
|
441 |
-
files = [f for f in os.listdir(AUDIO_FOLDER_PATH) if f.endswith(('.wav', '.mp3'))]
|
442 |
-
return files
|
443 |
-
|
444 |
-
# Step 1: Load and display audio file
|
445 |
-
def load_audio_file(selected_audio):
|
446 |
-
file_path = os.path.join(AUDIO_FOLDER_PATH, selected_audio)
|
447 |
-
return file_path
|
448 |
-
|
449 |
-
# Step 1.1: Record and save the audio file
|
450 |
-
def save_recorded_audio(audio):
|
451 |
-
file_path = os.path.join(AUDIO_FOLDER_PATH, "recorded_audio.wav")
|
452 |
-
audio.export(file_path, format="wav") # Save the audio as a .wav file
|
453 |
-
return file_path
|
454 |
-
|
455 |
-
def click_js():
|
456 |
-
return """function audioRecord() {
|
457 |
-
var xPathRes = document.evaluate ('//*[@id="audio"]//button', document, null, XPathResult.FIRST_ORDERED_NODE_TYPE, null);
|
458 |
-
xPathRes.singleNodeValue.click();}"""
|
459 |
-
|
460 |
-
|
461 |
-
def action(btn):
|
462 |
-
"""Changes button text on click"""
|
463 |
-
if btn == 'Speak':
|
464 |
-
return 'Stop'
|
465 |
-
else:
|
466 |
-
return 'Speak'
|
467 |
-
|
468 |
-
|
469 |
-
def check_btn(btn):
|
470 |
-
"""Checks for correct button text before invoking transcribe()"""
|
471 |
-
if btn != 'Speak':
|
472 |
-
raise Exception('Recording...')
|
473 |
-
|
474 |
-
|
475 |
-
def transcribe():
|
476 |
-
return 'Success'
|
477 |
-
|
478 |
-
|
479 |
-
def transcribe_audio_app(audio_path):
|
480 |
-
# Prétraitement de l'audio
|
481 |
-
audio = preprocess_audio(audio_path)
|
482 |
-
|
483 |
-
# Chargement du modèle
|
484 |
-
model,processor = load_model_and_processor(model_name="openai/whisper-base")
|
485 |
-
|
486 |
-
# Transcription
|
487 |
-
transcription = transcribe_audio(model=model,processor=processor,audio=audio)
|
488 |
-
|
489 |
-
return transcription
|
490 |
-
|
491 |
-
|
492 |
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")
|
493 |
|
494 |
with demo:
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
gr.Markdown(
|
499 |
-
"""
|
500 |
-
<p align="center">
|
501 |
-
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
|
502 |
-
</p>
|
503 |
-
""")
|
504 |
-
|
505 |
gr.Markdown(
|
506 |
"""
|
507 |
-
<h1 style="text-align: center;">Secure De-Identification of
|
508 |
-
<!--
|
509 |
-
<p align="center">
|
510 |
-
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
|
511 |
-
—
|
512 |
-
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
|
513 |
-
—
|
514 |
-
<a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
|
515 |
-
—
|
516 |
-
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
|
517 |
-
</p>
|
518 |
-
-->
|
519 |
"""
|
520 |
)
|
521 |
|
522 |
gr.Markdown(
|
523 |
"""
|
524 |
<p align="center" style="font-size: 18px;">
|
525 |
-
|
526 |
-
</p>
|
527 |
-
|
528 |
-
<p align="center" style="font-size: 18px;">
|
529 |
-
Traditional methods of de-identification often fall short of true anonymization, merely concealing identifiable information. With FHE, we go beyond obfuscation to provide <b>complete security,</b> allowing computations to be performed directly on encrypted data without ever exposing sensitive details.
|
530 |
-
</p>
|
531 |
-
|
532 |
-
<p align="center" style="font-size: 18px;">
|
533 |
-
This technology is crucial in enabling organizations to use and share sensitive data responsibly, while fully respecting individual privacy.
|
534 |
</p>
|
535 |
"""
|
536 |
)
|
537 |
|
538 |
-
|
539 |
-
# Step 1: Add an audio file
|
540 |
-
gr.Markdown("## Step 1: Add an Audio File")
|
541 |
-
audio_files = get_audio_files()
|
542 |
-
|
543 |
-
with gr.Row():
|
544 |
-
audio_file_dropdown = gr.Dropdown(audio_files, label="Select an Audio File", interactive=True)
|
545 |
-
audio_output = gr.Audio(label="Selected Audio", type="filepath")
|
546 |
-
|
547 |
-
# When an audio file is selected, it will display the file path
|
548 |
-
audio_file_dropdown.change(fn=load_audio_file, inputs=[audio_file_dropdown], outputs=[audio_output])
|
549 |
-
|
550 |
-
with gr.Row():
|
551 |
-
transcribe_btn = gr.Button("Transcrire l'audio")
|
552 |
-
transcription_output = gr.Textbox(label="Transcription", lines=5)
|
553 |
-
|
554 |
-
transcribe_btn.click(
|
555 |
-
fn=transcribe_audio_app,
|
556 |
-
inputs=[audio_output],
|
557 |
-
outputs=[transcription_output]
|
558 |
-
)
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
########################## Step 1.1: Record Audio ##########################
|
564 |
-
|
565 |
-
gr.Markdown("## Step 1.1: Record an Audio File")
|
566 |
-
"""
|
567 |
-
with gr.Row():
|
568 |
-
audio_recorder = gr.Audio(source="microphone", type="file", label="Record Audio")
|
569 |
-
record_output = gr.Audio(label="Recorded Audio", type="filepath")
|
570 |
-
# When the user records an audio, save it
|
571 |
-
audio_recorder.change(fn=save_recorded_audio, inputs=[audio_recorder], outputs=[record_output])
|
572 |
-
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
|
573 |
-
gen_key_btn.click(
|
574 |
-
key_gen_fn,
|
575 |
-
inputs=[],
|
576 |
-
outputs=[gen_key_btn],
|
577 |
-
) """
|
578 |
-
|
579 |
-
msg = gr.Textbox()
|
580 |
-
|
581 |
-
audio_box = gr.Audio(label="Audio", type="filepath", elem_id='audio')
|
582 |
-
|
583 |
-
with gr.Row():
|
584 |
-
audio_btn = gr.Button('Speak')
|
585 |
-
clear = gr.Button("Clear")
|
586 |
-
|
587 |
-
audio_btn.click(fn=action, inputs=audio_btn, outputs=audio_btn) \
|
588 |
-
.then(fn=check_btn, inputs=audio_btn) \
|
589 |
-
.success(fn=transcribe_audio_app, outputs=msg)
|
590 |
-
|
591 |
-
clear.click(lambda: None, None, msg, queue=False)
|
592 |
-
|
593 |
-
########################## Transcription ##########################
|
594 |
-
with gr.Row():
|
595 |
-
transcribe_btn = gr.Button("Transcrire l'audio")
|
596 |
-
transcription_output = gr.Textbox(label="Transcription", lines=5)
|
597 |
-
|
598 |
-
transcribe_btn.click(
|
599 |
-
fn=transcribe_audio_app,
|
600 |
-
inputs=[audio_output],
|
601 |
-
outputs=[transcription_output]
|
602 |
-
)
|
603 |
-
|
604 |
########################## Key Gen Part ##########################
|
605 |
-
|
606 |
gr.Markdown(
|
607 |
-
"## Step 1
|
608 |
-
"""In Fully Homomorphic Encryption (FHE) methods, two types of keys are created
|
609 |
-
|
610 |
-
called evaluation keys, enables a server to work on the encrypted data without seeing the
|
611 |
-
actual data.
|
612 |
-
"""
|
613 |
)
|
614 |
|
615 |
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
|
|
|
616 |
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
|
|
|
|
|
|
621 |
)
|
622 |
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
"""To make it simple, we pre-compiled the following document, but you are free to choose
|
628 |
-
on which part you want to run this example.
|
629 |
-
"""
|
630 |
)
|
631 |
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
label="Contract:",
|
638 |
-
show_label=True,
|
639 |
-
)
|
640 |
-
|
641 |
-
with gr.Column(scale=1, min_width=6):
|
642 |
-
gr.HTML("<div style='height: 77px;'></div>")
|
643 |
-
encrypt_doc_btn = gr.Button("Encrypt the document")
|
644 |
-
|
645 |
-
with gr.Column(scale=5):
|
646 |
-
encrypted_doc_box = gr.Textbox(
|
647 |
-
label="Encrypted document:", show_label=True, interactive=False, lines=10
|
648 |
-
)
|
649 |
-
|
650 |
-
|
651 |
-
########################## User Query Part ##########################
|
652 |
-
|
653 |
-
gr.Markdown("<hr />")
|
654 |
-
gr.Markdown("## Step 2.2: Select the prompt you want to encrypt\n\n"
|
655 |
-
"""Please choose from the predefined options in
|
656 |
-
<span style='color:grey'>“Prompt examples”</span> or craft a custom question in
|
657 |
-
the <span style='color:grey'>“Customized prompt”</span> text box.
|
658 |
-
Remain concise and relevant to the context. Any off-topic query will not be processed.""")
|
659 |
-
|
660 |
-
with gr.Row():
|
661 |
-
with gr.Column(scale=5):
|
662 |
-
|
663 |
-
with gr.Column(scale=5):
|
664 |
-
default_query_box = gr.Dropdown(
|
665 |
-
list(DEFAULT_QUERIES.values()), label="PROMPT EXAMPLES:"
|
666 |
-
)
|
667 |
-
|
668 |
-
gr.Markdown("Or")
|
669 |
-
|
670 |
-
query_box = gr.Textbox(
|
671 |
-
value=" Hello. My name is Inuitvementoya. You kill my father. Prepare to die.", label="CUSTOMIZED PROMPT:", interactive=True
|
672 |
-
)
|
673 |
-
|
674 |
-
default_query_box.change(
|
675 |
-
fn=lambda default_query_box: default_query_box,
|
676 |
-
inputs=[default_query_box],
|
677 |
-
outputs=[query_box],
|
678 |
-
)
|
679 |
-
|
680 |
-
with gr.Column(scale=1, min_width=6):
|
681 |
-
gr.HTML("<div style='height: 77px;'></div>")
|
682 |
-
encrypt_query_btn = gr.Button("Encrypt the prompt")
|
683 |
-
# gr.HTML("<div style='height: 50px;'></div>")
|
684 |
-
|
685 |
-
with gr.Column(scale=5):
|
686 |
-
output_encrypted_box = gr.Textbox(
|
687 |
-
label="Encrypted de-identified query that will be sent to the de-identification server:",
|
688 |
-
lines=8,
|
689 |
-
)
|
690 |
|
691 |
########################## FHE processing Part ##########################
|
692 |
-
|
693 |
-
gr.Markdown("<hr />")
|
694 |
-
gr.Markdown("## Step 3: De-identify the document and the prompt using FHE")
|
695 |
gr.Markdown(
|
696 |
-
"""
|
697 |
-
server
|
698 |
-
server will return the result to the client for decryption."""
|
699 |
-
|
700 |
)
|
701 |
|
702 |
run_fhe_btn = gr.Button("De-identify using FHE")
|
703 |
-
|
704 |
-
|
705 |
-
with gr.Column(scale=5):
|
706 |
-
|
707 |
-
anonymized_doc_output = gr.Textbox(
|
708 |
-
label="Decrypted and de-idenntified document", lines=10, interactive=True
|
709 |
-
)
|
710 |
-
|
711 |
-
with gr.Column(scale=5):
|
712 |
-
|
713 |
-
anonymized_query_output = gr.Textbox(
|
714 |
-
label="Decrypted and de-identified prompt", lines=10, interactive=True
|
715 |
-
)
|
716 |
-
|
717 |
-
|
718 |
-
identified_words_output_df = gr.Dataframe(label="Identified words:", visible=False)
|
719 |
-
|
720 |
-
encrypt_doc_btn.click(
|
721 |
-
fn=encrypt_doc_fn,
|
722 |
-
inputs=[original_sentences_box],
|
723 |
-
outputs=[encrypted_doc_box, anonymized_doc_output],
|
724 |
-
)
|
725 |
-
|
726 |
-
encrypt_query_btn.click(
|
727 |
-
fn=encrypt_query_fn,
|
728 |
-
inputs=[query_box],
|
729 |
-
outputs=[
|
730 |
-
query_box,
|
731 |
-
output_encrypted_box,
|
732 |
-
anonymized_query_output,
|
733 |
-
identified_words_output_df,
|
734 |
-
],
|
735 |
)
|
|
|
736 |
|
737 |
run_fhe_btn.click(
|
738 |
anonymization_with_fn,
|
739 |
-
inputs=[original_sentences_box, query_box],
|
740 |
-
outputs=[anonymized_doc_output, anonymized_query_output, identified_words_output_df],
|
741 |
-
)
|
742 |
-
|
743 |
-
|
744 |
-
########################## Presidio ##########################
|
745 |
-
gr.Markdown("<hr />")
|
746 |
-
gr.Markdown("## Step 3: De-identify the document and the prompt")
|
747 |
-
gr.Markdown(
|
748 |
-
"""This step will demonstrate de-identification using both FHE and Presidio methods.
|
749 |
-
The same prompt will be used for both to allow for direct comparison.""")
|
750 |
-
|
751 |
-
with gr.Row():
|
752 |
-
run_presidio_btn = gr.Button("De-identify using Presidio")
|
753 |
-
|
754 |
-
with gr.Row():
|
755 |
-
presidio_output = gr.Textbox(
|
756 |
-
label="Presidio: De-identified prompt", lines=10, interactive=True
|
757 |
-
)
|
758 |
-
|
759 |
-
run_presidio_btn.click(
|
760 |
-
anonymization_with_presidio,
|
761 |
inputs=[query_box],
|
762 |
-
outputs=[
|
763 |
)
|
764 |
|
765 |
-
|
766 |
# Launch the app
|
767 |
demo.launch(share=False)
|
|
|
13 |
import pandas as pd
|
14 |
import requests
|
15 |
from fhe_anonymizer import FHEAnonymizer
|
|
|
16 |
from utils_demo import *
|
17 |
|
18 |
from concrete.ml.deployment import FHEModelClient
|
|
|
21 |
from models.speech_to_text.transcriber.model import load_model_and_processor
|
22 |
from models.speech_to_text.transcriber.audio import transcribe_audio
|
23 |
|
|
|
24 |
# Ensure the directory is clean before starting processes or reading files
|
25 |
clean_directory()
|
26 |
|
27 |
anonymizer = FHEAnonymizer()
|
|
|
28 |
|
29 |
# Start the Uvicorn server hosting the FastAPI app
|
30 |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
|
|
|
32 |
|
33 |
# Load data from files required for the application
|
34 |
UUID_MAP = read_json(MAPPING_UUID_PATH)
|
|
|
|
|
|
|
|
|
35 |
MAPPING_DOC_EMBEDDING = read_pickle(MAPPING_DOC_EMBEDDING_PATH)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Generate a random user ID for this session
|
38 |
USER_ID = numpy.random.randint(0, 2**32)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def key_gen_fn() -> Dict:
|
41 |
"""Generate keys for a given user."""
|
|
|
42 |
print("------------ Step 1: Key Generation:")
|
|
|
43 |
print(f"Your user ID is: {USER_ID}....")
|
44 |
|
|
|
45 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
46 |
client.load()
|
47 |
|
|
|
54 |
|
55 |
# Save the evaluation key
|
56 |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
|
|
57 |
write_bytes(evaluation_key_path, serialized_evaluation_keys)
|
58 |
|
|
|
|
|
59 |
if not evaluation_key_path.is_file():
|
60 |
+
error_message = f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
|
|
|
|
|
61 |
print(error_message)
|
62 |
return {gen_key_btn: gr.update(value=error_message)}
|
63 |
else:
|
64 |
print("Keys have been generated ✅")
|
65 |
return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def encrypt_query_fn(query):
|
|
|
68 |
print(f"\n------------ Step 2: Query encryption: {query=}")
|
69 |
|
70 |
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
|
|
|
73 |
if is_user_query_valid(query):
|
74 |
return {
|
75 |
query_box: gr.update(
|
76 |
+
value="Unable to process ❌: The request exceeds the length limit or falls outside the scope. Please refine your query."
|
|
|
|
|
|
|
77 |
)
|
78 |
}
|
79 |
|
|
|
80 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
81 |
client.load()
|
82 |
|
83 |
encrypted_tokens = []
|
|
|
|
|
84 |
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)
|
85 |
|
86 |
for token in tokens:
|
87 |
+
if not bool(re.match(r"^\s+$", token)):
|
88 |
+
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
|
89 |
+
encrypted_x = client.quantize_encrypt_serialize(emb_x)
|
90 |
+
assert isinstance(encrypted_x, bytes)
|
91 |
+
encrypted_tokens.append(encrypted_x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
print("Data encrypted ✅ on Client Side")
|
94 |
|
95 |
assert len({len(token) for token in encrypted_tokens}) == 1
|
96 |
|
97 |
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input", b"".join(encrypted_tokens))
|
98 |
+
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input_len", len(encrypted_tokens[0]).to_bytes(10, "big"))
|
|
|
|
|
99 |
|
100 |
encrypted_quant_tokens_hex = [token.hex()[500:580] for token in encrypted_tokens]
|
101 |
|
|
|
105 |
identified_words_output_df: gr.update(visible=False, value=None),
|
106 |
}
|
107 |
|
|
|
108 |
def send_input_fn(query) -> Dict:
|
|
|
|
|
109 |
print("------------ Step 3.1: Send encrypted_data to the Server")
|
110 |
|
111 |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
112 |
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
|
113 |
encrypted_input_len_path = KEYS_DIR / f"{USER_ID}/encrypted_input_len"
|
114 |
|
115 |
+
if not evaluation_key_path.is_file() or not encrypted_input_path.is_file():
|
116 |
+
error_message = "Error: Key or encrypted input not found. Please generate the key and encrypt the query first."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
return {anonymized_query_output: gr.update(value=error_message)}
|
118 |
|
|
|
119 |
data = {"user_id": USER_ID, "input": query}
|
|
|
120 |
files = [
|
121 |
("files", open(evaluation_key_path, "rb")),
|
122 |
("files", open(encrypted_input_path, "rb")),
|
123 |
("files", open(encrypted_input_len_path, "rb")),
|
124 |
]
|
125 |
|
|
|
126 |
url = SERVER_URL + "send_input"
|
127 |
+
with requests.post(url=url, data=data, files=files) as resp:
|
|
|
|
|
|
|
|
|
|
|
128 |
print("Data sent to the server ✅" if resp.ok else "Error ❌ in sending data to the server")
|
129 |
|
|
|
130 |
def run_fhe_in_server_fn() -> Dict:
|
|
|
|
|
131 |
print("------------ Step 3.2: Run in FHE on the Server Side")
|
132 |
|
133 |
+
data = {"user_id": USER_ID}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
url = SERVER_URL + "run_fhe"
|
135 |
|
136 |
+
with requests.post(url=url, data=data) as response:
|
|
|
|
|
|
|
137 |
if not response.ok:
|
138 |
return {
|
139 |
anonymized_query_output: gr.update(
|
140 |
+
value="⚠️ An error occurred on the Server Side. Please check connectivity and data transmission."
|
|
|
|
|
|
|
141 |
),
|
142 |
}
|
143 |
else:
|
144 |
time.sleep(1)
|
145 |
print(f"The query anonymization was computed in {response.json():.2f} s per token.")
|
146 |
|
|
|
147 |
def get_output_fn() -> Dict:
|
|
|
148 |
print("------------ Step 3.3: Get the output from the Server Side")
|
149 |
|
150 |
+
data = {"user_id": USER_ID}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
url = SERVER_URL + "get_output"
|
152 |
+
|
153 |
+
with requests.post(url=url, data=data) as response:
|
|
|
|
|
154 |
if response.ok:
|
155 |
print("Data received ✅ from the remote Server")
|
156 |
response_data = response.json()
|
157 |
+
encrypted_output = base64.b64decode(response_data["encrypted_output"])
|
158 |
+
length_encrypted_output = base64.b64decode(response_data["length"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output", encrypted_output)
|
161 |
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len", length_encrypted_output)
|
|
|
162 |
else:
|
163 |
+
print("Error ❌ in getting data from the server")
|
|
|
164 |
|
165 |
def decrypt_fn(text) -> Dict:
|
166 |
+
print("------------ Step 4: Decrypt the data on the `Client Side`")
|
167 |
|
|
|
|
|
|
|
168 |
encrypted_output_path = CLIENT_DIR / f"{USER_ID}_encrypted_output"
|
169 |
|
170 |
if not encrypted_output_path.is_file():
|
171 |
+
error_message = "⚠️ Error: Encrypted output not found. Please ensure the entire process has been completed."
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
print(error_message)
|
|
|
173 |
return error_message, None
|
174 |
|
|
|
175 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
176 |
client.load()
|
177 |
|
|
|
178 |
encrypted_output = read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output")
|
179 |
length = int.from_bytes(read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len"), "big")
|
180 |
|
|
|
184 |
|
185 |
i = 0
|
186 |
for token in tokens:
|
187 |
+
if not bool(re.match(r"^\s+$", token)):
|
|
|
|
|
|
|
|
|
188 |
encrypted_token = encrypted_output[i : i + length]
|
189 |
prediction_proba = client.deserialize_decrypt_dequantize(encrypted_token)
|
190 |
probability = prediction_proba[0][1]
|
|
|
192 |
|
193 |
if probability >= 0.77:
|
194 |
identified_words_with_prob.append((token, probability))
|
|
|
|
|
195 |
tmp_uuid = UUID_MAP.get(token, str(uuid.uuid4())[:8])
|
196 |
decrypted_output.append(tmp_uuid)
|
197 |
UUID_MAP[token] = tmp_uuid
|
198 |
else:
|
199 |
decrypted_output.append(token)
|
200 |
|
201 |
+
write_json(MAPPING_UUID_PATH, UUID_MAP)
|
|
|
202 |
|
|
|
203 |
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", " ".join(decrypted_output))
|
204 |
|
205 |
+
identified_df = pd.DataFrame(
|
206 |
+
identified_words_with_prob, columns=["Identified Words", "Probability"]
|
207 |
+
) if identified_words_with_prob else pd.DataFrame(columns=["Identified Words", "Probability"])
|
|
|
|
|
|
|
|
|
208 |
|
209 |
print("Decryption done ✅ on Client Side")
|
210 |
|
211 |
return anonymized_text, identified_df
|
212 |
|
213 |
+
def anonymization_with_fn(query):
|
|
|
|
|
214 |
encrypt_query_fn(query)
|
|
|
215 |
send_input_fn(query)
|
|
|
216 |
run_fhe_in_server_fn()
|
|
|
217 |
get_output_fn()
|
|
|
218 |
anonymized_text, identified_df = decrypt_fn(query)
|
219 |
|
220 |
return {
|
|
|
221 |
anonymized_query_output: gr.update(value=anonymized_text),
|
222 |
+
identified_words_output_df: gr.update(value=identified_df, visible=True),
|
223 |
}
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")
|
226 |
|
227 |
with demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
gr.Markdown(
|
229 |
"""
|
230 |
+
<h1 style="text-align: center;">Secure De-Identification of Text Data using FHE</h1>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
"""
|
232 |
)
|
233 |
|
234 |
gr.Markdown(
|
235 |
"""
|
236 |
<p align="center" style="font-size: 18px;">
|
237 |
+
This demo showcases privacy-preserving de-identification of text data using Fully Homomorphic Encryption (FHE).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
</p>
|
239 |
"""
|
240 |
)
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
########################## Key Gen Part ##########################
|
|
|
243 |
gr.Markdown(
|
244 |
+
"## Step 1: Generate the keys\n\n"
|
245 |
+
"""In Fully Homomorphic Encryption (FHE) methods, two types of keys are created: secret keys for encrypting and decrypting user data,
|
246 |
+
and evaluation keys for the server to work on encrypted data without seeing the actual content."""
|
|
|
|
|
|
|
247 |
)
|
248 |
|
249 |
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
|
250 |
+
gen_key_btn.click(key_gen_fn, inputs=[], outputs=[gen_key_btn])
|
251 |
|
252 |
+
########################## User Query Part ##########################
|
253 |
+
gr.Markdown("## Step 2: Enter the prompt you want to encrypt and de-identify")
|
254 |
+
|
255 |
+
query_box = gr.Textbox(
|
256 |
+
value="Hello. My name is John Doe. I live at 123 Main St, Anytown, USA.",
|
257 |
+
label="Enter your prompt:",
|
258 |
+
interactive=True
|
259 |
)
|
260 |
|
261 |
+
encrypt_query_btn = gr.Button("Encrypt the prompt")
|
262 |
+
output_encrypted_box = gr.Textbox(
|
263 |
+
label="Encrypted prompt (will be sent to the de-identification server):",
|
264 |
+
lines=4,
|
|
|
|
|
|
|
265 |
)
|
266 |
|
267 |
+
encrypt_query_btn.click(
|
268 |
+
fn=encrypt_query_fn,
|
269 |
+
inputs=[query_box],
|
270 |
+
outputs=[query_box, output_encrypted_box],
|
271 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
########################## FHE processing Part ##########################
|
274 |
+
gr.Markdown("## Step 3: De-identify the prompt using FHE")
|
|
|
|
|
275 |
gr.Markdown(
|
276 |
+
"""The encrypted prompt will be sent to a remote server for de-identification using FHE.
|
277 |
+
The server performs computations on the encrypted data and returns the result for decryption."""
|
|
|
|
|
278 |
)
|
279 |
|
280 |
run_fhe_btn = gr.Button("De-identify using FHE")
|
281 |
+
anonymized_query_output = gr.Textbox(
|
282 |
+
label="De-identified prompt", lines=4, interactive=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
)
|
284 |
+
identified_words_output_df = gr.Dataframe(label="Identified words:", visible=False)
|
285 |
|
286 |
run_fhe_btn.click(
|
287 |
anonymization_with_fn,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
inputs=[query_box],
|
289 |
+
outputs=[anonymized_query_output, identified_words_output_df],
|
290 |
)
|
291 |
|
|
|
292 |
# Launch the app
|
293 |
demo.launch(share=False)
|