Spaces:
Sleeping
Sleeping
File size: 1,867 Bytes
fc78381 99c5cd4 4289215 a52d777 a64ef34 4289215 fc78381 4289215 3a7f6ac 4289215 99c5cd4 4289215 99c5cd4 6c3fbea 99c5cd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import os
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import AutoTokenizer
from model.modeling_llamask import LlamaskForCausalLM
from model.tokenizer_utils import generate_custom_mask, prepare_tokenizer
access_token = os.getenv("HF_TOKEN")
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
device = 'cpu'
model = LlamaskForCausalLM.from_pretrained(model_id, torch_dtype= torch.bfloat16, token=access_token)
model = model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
prepare_tokenizer(tokenizer)
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
):
prompt = """<|start_header_id|>system<|end_header_id|>
You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>
{message}
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
"""
model_inputs = generate_custom_mask(tokenizer, [prompt], device)
outputs = model.generate(temperature=0.7, max_tokens=64, **model_inputs)
outputs = outputs[:, model_inputs['input_ids'].shape[1]:]
result = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return result, []
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Markdown("Please enter your message. Add privacy tags (<sensitive>...</sensitive>) around the words you want to hide. Only the most recent message submitted will be taken into account (no history is retained)."),
gr.Slider(minimum=1, maximum=128, value=32, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
],
)
if __name__ == "__main__":
demo.launch() |