File size: 4,205 Bytes
46af628
14ff9c4
b62e42f
6169f27
02d9582
e2393a1
776f615
2fc2e11
02d9582
e2393a1
d70c8d8
e2393a1
6ca2a04
e2393a1
6ca2a04
 
 
e2393a1
 
6ca2a04
44e0cdf
 
6ca2a04
44e0cdf
 
6ca2a04
 
44e0cdf
 
6ca2a04
da7e215
44e0cdf
 
6ca2a04
 
e2393a1
6ca2a04
 
 
 
 
 
 
 
da7e215
61afaad
6ca2a04
 
b0e183d
6ca2a04
 
 
536d96b
 
 
 
ae013ce
6ca2a04
 
 
 
 
 
cd42a41
6ca2a04
 
 
cd42a41
6ca2a04
 
 
 
 
 
 
c516297
 
 
7bb6ae5
efd14d3
043fe71
da7e215
 
 
 
 
e2393a1
e8ad8b1
c475583
da7e215
 
44e0cdf
 
 
 
 
 
 
 
 
 
da7e215
 
6ca2a04
 
1e8bbcc
4fc18fb
 
 
 
6ca2a04
 
 
 
 
30f0829
 
 
 
6ca2a04
 
 
 
 
 
30f0829
 
 
 
6ca2a04
 
30f0829
 
 
 
6ca2a04
5b25195
 
 
 
 
 
da7e215
 
b3d7164
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import streamlit as st
import pandas as pd
from huggingface_hub import Repository
import os 
from pathlib import Path
import json
import numpy as np

 
# Declaring the variables for later use to talk to dataset

# the token is saved as secret key-value pair in the environment which can be access as shown below
#auth_token = os.environ.get("space_to_dataset") or True

#DATASET_REPO_URL = 'ppsingh/annotation_data'   # path to dataset repo
#DATA_FILENAME = "paralist.json"
#DATA_FILE = os.path.join("data", DATA_FILENAME)

# cloning the dataset repo
#repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL, repo_type="dataset", use_auth_token= auth_token)

# Data file name
#file_name = 'paralist.json'

# reading the json
#with open('data/{}'.format(file_name), 'r', encoding="utf8") as json_file:
#  paraList = json.load(json_file)

# getting outer level keys in json  
#keys = paraList.keys()              
#data = pd.read_csv("test.csv")

# sidebar with info and drop down to select from the keys
#st.sidebar.markdown(
#    """
# Data Annotation Demo 
#This app is demo how to use the space to provide user interface for the data annotation/tagging. The data resides in repo_type 'dataset'.
#"""
#)
#topic = None
#if keys is not None:
#  topic = st.sidebar.selectbox(
 
    #   label="Choose dataset topic to load", options=keys )
#  st.write(line)
#st.write(paraList)
#if topic is not None:
#  subtopics = list(paraList[topic].keys())
  #st.write(subtopics)
#  val = np.random.randint(0,len(subtopics)-1)
#  choice = subtopics[val]
#  st.write(choice)
  #if np.random.randint(0,1) == 0:
  #  choice = "Gender"
  #else:
  #  choice = "Women Empowernment"
  
#  idx = np.random.randint(0,3)
 # st.write(idx)
  #c1, c2, c3 = st.columns([3, 1, 1])
  #with c1:
   # st.header('Text')
    #st.write(paraList[topic][choice][idx]['textsegment'])
  
  #with c2:
   # st.header('Tag')
    #st.text(choice)
  
 # with c3:
    #st.header('Feedback')
    #feedback = None
#    feedback = st.selectbox('0 If Tag is not a good keyword for text, 5 for prefect match',(0,1,2,3,4,5)) 
#    if feedback:
#      if st.button('Submit'):
#        paraList[topic][choice][idx]['annotation'].append(feedback)
#      with open('data/{}'.format(file_name), 'r', encoding="utf8") as json_file:
 #       json.dump(paraList,json_file, ensure_ascii = True)
  #      repo.push_to_hub('added new annotation')
        
#st.write(paraList)      
    #new_row  = title
#  data = data.append(new_row, ignore_index=True)
#  st.write(data)
#  st.write(os.getcwd())
#  data.to_csv('test.csv', index= False)


#st.write(df)
#   st.write('data/test.csv')
# iterate over files in
# that directory        
#directory = os.getcwd()
#files = Path(directory).glob('*')
#for file in files:
#    st.write(file)

#with open(DATA_FILE, "a") as csvfile:
#  writer = csv.DictWriter(csvfile, fieldnames=["Sentences"])
#  writer.writerow({'Sentences': new_row})
#  repo.push_to_hub('adding new line')
#  st.write('Succcess')

  
import streamlit as st

col1, col2, col3 = st.columns(3)
#session_state = st.session_state.get(col1=False, col2=False, col3=False)
st.session_state.col1 =  False
st.session_state.col2 =  False
st.session_state.col3 =  False

col1_one = col1.button("CARTE", key="1")
col2_one = col2.button("TABLEAU", key="2")
col3_one = col3.button("SYNTHÈSE", key="3")

if col1_one or st.session_state.col1:
    st.session_state.col1 = True
    st.session_state.col2 = False
    st.session_state.col3 = False
    sel_Map = st.selectbox("Choose Map type :", options=['Hello1', 'Hello2'], index=1)
    if sel_Map == 'Hello1':
        st.write("Hello world! 1")
    elif sel_Map == 'Hello2':
        st.write("Hello world! 2")

if col2_one or st.session_state.col2:
    st.session_state.col1 = False
    st.session_state.col2 = True
    st.session_state.col3 = False
    st.write("Hello world! 3")

if col3_one or st.session_state.col3:
    st.session_state.col1 = False
    st.session_state.col2 = False
    st.session_state.col3 = True
    st.write("Hello world! 4")
    
    if st.button('Refresh'):
        st.session_state.col1 =  False
        st.session_state.col2 =  False
        st.session_state.col3 =  False