annotation_dev / app.py
ppsingh's picture
Update app.py
4fc18fb
raw
history blame
4.01 kB
import streamlit as st
import pandas as pd
from huggingface_hub import Repository
import os
from pathlib import Path
import json
import numpy as np
# Declaring the variables for later use to talk to dataset
# the token is saved as secret key-value pair in the environment which can be access as shown below
#auth_token = os.environ.get("space_to_dataset") or True
#DATASET_REPO_URL = 'ppsingh/annotation_data' # path to dataset repo
#DATA_FILENAME = "paralist.json"
#DATA_FILE = os.path.join("data", DATA_FILENAME)
# cloning the dataset repo
#repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL, repo_type="dataset", use_auth_token= auth_token)
# Data file name
#file_name = 'paralist.json'
# reading the json
#with open('data/{}'.format(file_name), 'r', encoding="utf8") as json_file:
# paraList = json.load(json_file)
# getting outer level keys in json
#keys = paraList.keys()
#data = pd.read_csv("test.csv")
# sidebar with info and drop down to select from the keys
#st.sidebar.markdown(
# """
# Data Annotation Demo
#This app is demo how to use the space to provide user interface for the data annotation/tagging. The data resides in repo_type 'dataset'.
#"""
#)
#topic = None
#if keys is not None:
# topic = st.sidebar.selectbox(
# label="Choose dataset topic to load", options=keys )
# st.write(line)
#st.write(paraList)
#if topic is not None:
# subtopics = list(paraList[topic].keys())
#st.write(subtopics)
# val = np.random.randint(0,len(subtopics)-1)
# choice = subtopics[val]
# st.write(choice)
#if np.random.randint(0,1) == 0:
# choice = "Gender"
#else:
# choice = "Women Empowernment"
# idx = np.random.randint(0,3)
# st.write(idx)
#c1, c2, c3 = st.columns([3, 1, 1])
#with c1:
# st.header('Text')
#st.write(paraList[topic][choice][idx]['textsegment'])
#with c2:
# st.header('Tag')
#st.text(choice)
# with c3:
#st.header('Feedback')
#feedback = None
# feedback = st.selectbox('0 If Tag is not a good keyword for text, 5 for prefect match',(0,1,2,3,4,5))
# if feedback:
# if st.button('Submit'):
# paraList[topic][choice][idx]['annotation'].append(feedback)
# with open('data/{}'.format(file_name), 'r', encoding="utf8") as json_file:
# json.dump(paraList,json_file, ensure_ascii = True)
# repo.push_to_hub('added new annotation')
#st.write(paraList)
#new_row = title
# data = data.append(new_row, ignore_index=True)
# st.write(data)
# st.write(os.getcwd())
# data.to_csv('test.csv', index= False)
#st.write(df)
# st.write('data/test.csv')
# iterate over files in
# that directory
#directory = os.getcwd()
#files = Path(directory).glob('*')
#for file in files:
# st.write(file)
#with open(DATA_FILE, "a") as csvfile:
# writer = csv.DictWriter(csvfile, fieldnames=["Sentences"])
# writer.writerow({'Sentences': new_row})
# repo.push_to_hub('adding new line')
# st.write('Succcess')
import streamlit as st
col1, col2, col3 = st.columns(3)
#session_state = st.session_state.get(col1=False, col2=False, col3=False)
st.session_state.col1 = False
st.session_state.col2 = False
st.session_state.col3 = False
col1_one = col1.button("CARTE", key="1")
col2_one = col2.button("TABLEAU", key="2")
col3_one = col3.button("SYNTHÈSE", key="3")
if col1_one or session_state.col1:
session_state.col1 = True
session_state.col2 = False
session_state.col3 = False
sel_Map = st.selectbox("Choose Map type :", options=['Hello1', 'Hello2'], index=1)
if sel_Map == 'Hello1':
st.write("Hello world! 1")
elif sel_Map == 'Hello2':
st.write("Hello world! 2")
if col2_one or session_state.col2:
session_state.col1 = False
session_state.col2 = True
session_state.col3 = False
st.write("Hello world! 3")
if col3_one or session_state.col3:
session_state.col1 = False
session_state.col2 = False
session_state.col3 = True
st.write("Hello world! 4")