import streamlit as st import pandas as pd from huggingface_hub import Repository import os from pathlib import Path import json import numpy as np # Declaring the variables for later use to talk to dataset # the token is saved as secret key-value pair in the environment which can be access as shown below #auth_token = os.environ.get("space_to_dataset") or True #DATASET_REPO_URL = 'ppsingh/annotation_data' # path to dataset repo #DATA_FILENAME = "paralist.json" #DATA_FILE = os.path.join("data", DATA_FILENAME) # cloning the dataset repo #repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL, repo_type="dataset", use_auth_token= auth_token) # Data file name #file_name = 'paralist.json' # reading the json #with open('data/{}'.format(file_name), 'r', encoding="utf8") as json_file: # paraList = json.load(json_file) # getting outer level keys in json #keys = paraList.keys() #data = pd.read_csv("test.csv") # sidebar with info and drop down to select from the keys #st.sidebar.markdown( # """ # Data Annotation Demo #This app is demo how to use the space to provide user interface for the data annotation/tagging. The data resides in repo_type 'dataset'. #""" #) #topic = None #if keys is not None: # topic = st.sidebar.selectbox( # label="Choose dataset topic to load", options=keys ) # st.write(line) #st.write(paraList) #if topic is not None: # subtopics = list(paraList[topic].keys()) #st.write(subtopics) # val = np.random.randint(0,len(subtopics)-1) # choice = subtopics[val] # st.write(choice) #if np.random.randint(0,1) == 0: # choice = "Gender" #else: # choice = "Women Empowernment" # idx = np.random.randint(0,3) # st.write(idx) #c1, c2, c3 = st.columns([3, 1, 1]) #with c1: # st.header('Text') #st.write(paraList[topic][choice][idx]['textsegment']) #with c2: # st.header('Tag') #st.text(choice) # with c3: #st.header('Feedback') #feedback = None # feedback = st.selectbox('0 If Tag is not a good keyword for text, 5 for prefect match',(0,1,2,3,4,5)) # if feedback: # if st.button('Submit'): # paraList[topic][choice][idx]['annotation'].append(feedback) # with open('data/{}'.format(file_name), 'r', encoding="utf8") as json_file: # json.dump(paraList,json_file, ensure_ascii = True) # repo.push_to_hub('added new annotation') #st.write(paraList) #new_row = title # data = data.append(new_row, ignore_index=True) # st.write(data) # st.write(os.getcwd()) # data.to_csv('test.csv', index= False) #st.write(df) # st.write('data/test.csv') # iterate over files in # that directory #directory = os.getcwd() #files = Path(directory).glob('*') #for file in files: # st.write(file) #with open(DATA_FILE, "a") as csvfile: # writer = csv.DictWriter(csvfile, fieldnames=["Sentences"]) # writer.writerow({'Sentences': new_row}) # repo.push_to_hub('adding new line') # st.write('Succcess') import streamlit as st session_state = st.session_state.get(col1=False, col2=False, col3=False) col1, col2, col3 = st.columns(3) col1_one = col1.button("CARTE", key="1") col2_one = col2.button("TABLEAU", key="2") col3_one = col3.button("SYNTHÈSE", key="3") if col1_one or session_state.col1: session_state.col1 = True session_state.col2 = False session_state.col3 = False sel_Map = st.selectbox("Choose Map type :", options=['Hello1', 'Hello2'], index=1) if sel_Map == 'Hello1': st.write("Hello world! 1") elif sel_Map == 'Hello2': st.write("Hello world! 2") if col2_one or session_state.col2: session_state.col1 = False session_state.col2 = True session_state.col3 = False st.write("Hello world! 3") if col3_one or session_state.col3: session_state.col1 = False session_state.col2 = False session_state.col3 = True st.write("Hello world! 4")