import streamlit as st import pandas as pd from huggingface_hub import Repository import os from pathlib import Path import json # Declaring the variables for later use to talk to dataset # the token is saved as secret key-value pair in the environment which can be access as shown below auth_token = os.environ.get("space_to_dataset") or True DATASET_REPO_URL = 'ppsingh/annotation_data' # path to dataset repo DATA_FILENAME = "paralist.json" DATA_FILE = os.path.join("data", DATA_FILENAME) # cloning the dataset repo repo = Repository( local_dir="data", clone_from=DATASET_REPO_URL, repo_type="dataset", use_auth_token= auth_token) import json file_name = 'paralist.json' with open('/content/data/{}'.format(file_name), 'r', encoding="utf8") as json_file: paraList = json.load(json_file) keys = paraList.keys() #data = pd.read_csv("test.csv") #for line in data: st.sidebar.markdown( """ # Data Annotation Demo This app is demo how to use the space to provide user interface for the data annotation/tagging. The data resides in repo_type 'dataset'. """ ) if keys is not None: topic = st.sidebar.selectbox( label="Choose dataset topic to load", options=keys ) # st.write(line) title = st.text_input('Movie title', 'Life of Brian') if st.button('Submit'): new_row = title # data = data.append(new_row, ignore_index=True) # st.write(data) # st.write(os.getcwd()) # data.to_csv('test.csv', index= False) #st.write(df) # st.write('data/test.csv') # iterate over files in # that directory directory = os.getcwd() files = Path(directory).glob('*') for file in files: st.write(file) with open(DATA_FILE, "a") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=["Sentences"]) writer.writerow({'Sentences': new_row}) repo.push_to_hub('adding new line') st.write('Succcess')