|
from summarizer import Summarizer |
|
|
|
bert_model = Summarizer() |
|
|
|
|
|
|
|
|
|
|
|
def abstractive_text(text): |
|
summary_text = bert_model(text, ratio=0.1) |
|
return summary_text |
|
|
|
|
|
import gradio as gr |
|
sum_iface = gr.Interface(fn=abstractive_text, inputs= ["text"],outputs=["text"],title="Case Summary Generation").queue() |
|
|
|
|
|
|
|
import transformers |
|
from transformers import BloomForCausalLM |
|
from transformers import BloomTokenizerFast |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import gradio as gr |
|
|
|
from transformers import GPTJForCausalLM |
|
import torch |
|
|
|
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", torch_dtype=torch.float16, low_cpu_mem_usage=True) |
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") |
|
|
|
def get_result_with_bloom(text): |
|
context = text |
|
|
|
input_ids = tokenizer(context, return_tensors="pt").input_ids |
|
gen_tokens = model.generate(input_ids, do_sample=True, temperature=0.9, max_length=100,) |
|
gen_text = tokenizer.batch_decode(gen_tokens)[0] |
|
return gen_text |
|
|
|
|
|
|
|
|
|
txtgen_iface = gr.Interface(fn=get_result_with_bloom,inputs = "text",outputs=["text"],title="Text Generation").queue() |
|
|
|
|
|
import spacy.cli |
|
import en_core_med7_lg |
|
import spacy |
|
import gradio as gr |
|
|
|
spacy.cli.download("en_core_web_lg") |
|
|
|
|
|
med7 = en_core_med7_lg.load() |
|
|
|
|
|
col_dict = {} |
|
seven_colours = ['#e6194B', '#3cb44b', '#ffe119', '#ffd8b1', '#f58231', '#f032e6', '#42d4f4'] |
|
for label, colour in zip(med7.pipe_labels['ner'], seven_colours): |
|
col_dict[label] = colour |
|
|
|
options = {'ents': med7.pipe_labels['ner'], 'colors':col_dict} |
|
|
|
|
|
def ner_drugs(text): |
|
doc = med7(text) |
|
|
|
spacy.displacy.render(doc, style='ent', jupyter=True, options=options) |
|
|
|
return [(ent.text, ent.label_) for ent in doc.ents] |
|
|
|
|
|
|
|
med_iface = gr.Interface(fn=ner_drugs,inputs = "text",outputs=["text"],title="Drugs Named Entity Recognition").queue() |
|
|
|
|
|
from diffusers import StableDiffusionPipeline |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') |
|
|
|
|
|
|
|
|
|
def stable_image(text): |
|
prompt = text |
|
|
|
return pipe(prompt).images[0] |
|
|
|
|
|
|
|
import gradio as gr |
|
stable_iface = gr.Interface(fn=stable_image, inputs= "text",outputs=["image"],title="Text to Image").queue() |
|
|
|
|
|
|
|
demo = gr.TabbedInterface( |
|
|
|
[txtgen_iface, sum_iface, med_iface,stable_iface], ["Text Generation", "Summary Generation", "Drug Named-entity Recognition","Text to Image"], |
|
title="United We Care", |
|
|
|
) |
|
|
|
demo.queue() |
|
demo.launch(share=False) |