Update app.py
Browse files
app.py
CHANGED
@@ -43,6 +43,82 @@ def abstractive_text(text):
|
|
43 |
|
44 |
|
45 |
import gradio as gr
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
43 |
|
44 |
|
45 |
import gradio as gr
|
46 |
+
sum_iface = gr.Interface(fn=abstractive_text, inputs= ["text"],outputs=["text"],title="Case summary generation")
|
47 |
+
sum_iface.launch(share=False)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
import transformers
|
52 |
+
from transformers import BloomForCausalLM
|
53 |
+
from transformers import BloomTokenizerFast
|
54 |
+
import torch
|
55 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
56 |
+
import gradio as gr
|
57 |
+
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
|
59 |
+
|
60 |
+
model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m")
|
61 |
+
|
62 |
+
def get_result_with_bloom(text):
|
63 |
+
result_length = 200
|
64 |
+
inputs1 = tokenizer(text, return_tensors="pt")
|
65 |
+
output1 = tokenizer.decode(model.generate(inputs1["input_ids"],
|
66 |
+
max_length=result_length,
|
67 |
+
num_beams=2,
|
68 |
+
no_repeat_ngram_size=2,
|
69 |
+
early_stopping=True
|
70 |
+
)[0])
|
71 |
+
return output1
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
txtgen_iface = gr.Interface(fn=get_result_with_bloom,inputs = "text",outputs=["text"],title="Text generation with Bloom")
|
77 |
+
txtgen_iface.launch(share=True)
|
78 |
+
|
79 |
+
|
80 |
+
import spacy.cli
|
81 |
+
import en_core_med7_lg
|
82 |
+
import spacy
|
83 |
+
import gradio as gr
|
84 |
+
|
85 |
+
spacy.cli.download("en_core_web_lg")
|
86 |
+
|
87 |
+
|
88 |
+
med7 = en_core_med7_lg.load()
|
89 |
+
|
90 |
+
# create distinct colours for labels
|
91 |
+
col_dict = {}
|
92 |
+
seven_colours = ['#e6194B', '#3cb44b', '#ffe119', '#ffd8b1', '#f58231', '#f032e6', '#42d4f4']
|
93 |
+
for label, colour in zip(med7.pipe_labels['ner'], seven_colours):
|
94 |
+
col_dict[label] = colour
|
95 |
+
|
96 |
+
options = {'ents': med7.pipe_labels['ner'], 'colors':col_dict}
|
97 |
+
|
98 |
+
#text = 'A patient was prescribed Magnesium hydroxide 400mg/5ml suspension PO of total 30ml bid for the next 5 days.'
|
99 |
+
def ner_drugs(text):
|
100 |
+
doc = med7(text)
|
101 |
+
|
102 |
+
spacy.displacy.render(doc, style='ent', jupyter=True, options=options)
|
103 |
+
|
104 |
+
return [(ent.text, ent.label_) for ent in doc.ents]
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
med_iface = gr.Interface(fn=ner_drugs,inputs = "text",outputs=["text"],title="Drugs Named Entity Recognition")
|
109 |
+
med_iface.launch(share=True)
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
demo = gr.TabbedInterface(
|
114 |
+
|
115 |
+
[txtgen_iface, sum_iface, med_iface], ["Text Generation", "Summary Generation", "Named-entity recognition"],
|
116 |
+
title=title,
|
117 |
+
|
118 |
+
)
|
119 |
+
|
120 |
+
demo.queue()
|
121 |
+
demo.launch(share=False)
|
122 |
+
|
123 |
+
|
124 |
|