import cv2 import numpy as np def video_Frames(clip_path,img_size = 64): video = cv2.VideoCapture(clip_path) frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) for count in range(frame_count): flag, frame = video.read() if not flag: break frame = cv2.resize(frame,(img_size,img_size)) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) #normalizing the pixels between 0 and 1 frame = frame/255.0 yield frame video.release() def load_video(folder_path): imgs = [] frames_generator = video_Frames(folder_path) frames_array = np.array(list(frames_generator)) imgs.append(frames_array) real_imgs = np.array(imgs) return imgs def eval_real(real_imgs, model): pred1 = model.predict(real_imgs) pred1_max = pred1.argmax() return pred1_max