Spaces:
Running
Running
Delete app.py
Browse files
app.py
DELETED
@@ -1,419 +0,0 @@
|
|
1 |
-
from ultralytics import YOLO
|
2 |
-
import base64
|
3 |
-
import cv2
|
4 |
-
import io
|
5 |
-
import numpy as np
|
6 |
-
from ultralytics.utils.plotting import Annotator
|
7 |
-
import streamlit as st
|
8 |
-
from streamlit_image_coordinates import streamlit_image_coordinates
|
9 |
-
import pandas as pd
|
10 |
-
import ollama
|
11 |
-
import bs4
|
12 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
-
from langchain_community.document_loaders import WebBaseLoader
|
14 |
-
from langchain_community.document_loaders import CSVLoader
|
15 |
-
from langchain_community.vectorstores import Chroma
|
16 |
-
from langchain_community.embeddings import OllamaEmbeddings
|
17 |
-
from langchain_core.output_parsers import StrOutputParser
|
18 |
-
from langchain_core.runnables import RunnablePassthrough
|
19 |
-
|
20 |
-
def set_background(image_file1,image_file2):
|
21 |
-
|
22 |
-
with open(image_file1, "rb") as f:
|
23 |
-
img_data1 = f.read()
|
24 |
-
b64_encoded1 = base64.b64encode(img_data1).decode()
|
25 |
-
with open(image_file2, "rb") as f:
|
26 |
-
img_data2 = f.read()
|
27 |
-
b64_encoded2 = base64.b64encode(img_data2).decode()
|
28 |
-
style = f"""
|
29 |
-
<style>
|
30 |
-
.stApp{{
|
31 |
-
background-image: url(data:image/png;base64,{b64_encoded1});
|
32 |
-
background-size: cover;
|
33 |
-
|
34 |
-
}}
|
35 |
-
.st-emotion-cache-6qob1r{{
|
36 |
-
background-image: url(data:image/png;base64,{b64_encoded2});
|
37 |
-
background-size: cover;
|
38 |
-
border: 5px solid rgb(14, 17, 23);
|
39 |
-
|
40 |
-
}}
|
41 |
-
</style>
|
42 |
-
"""
|
43 |
-
st.markdown(style, unsafe_allow_html=True)
|
44 |
-
|
45 |
-
set_background('pngtree-city-map-navigation-interface-picture-image_1833642.png','2024-05-18_14-57-09_5235.png')
|
46 |
-
|
47 |
-
st.title("Traffic Flow and Optimization Toolkit")
|
48 |
-
|
49 |
-
sb = st.sidebar # defining the sidebar
|
50 |
-
|
51 |
-
sb.markdown("🛰️ **Navigation**")
|
52 |
-
page_names = ["PS1", "PS2", "PS3","Chat with Results"]
|
53 |
-
page = sb.radio("", page_names, index=0)
|
54 |
-
st.session_state['n'] = sb.slider("Number of ROIs",1,5)
|
55 |
-
|
56 |
-
if page == 'PS1':
|
57 |
-
uploaded_file = st.file_uploader("Choose a video...", type=["mp4", "mpeg"])
|
58 |
-
if uploaded_file is not None:
|
59 |
-
g = io.BytesIO(uploaded_file.read())
|
60 |
-
temporary_location = "temp_PS1.mp4"
|
61 |
-
|
62 |
-
with open(temporary_location, 'wb') as out:
|
63 |
-
out.write(g.read())
|
64 |
-
out.close()
|
65 |
-
model = YOLO('yolov8n.pt')
|
66 |
-
if 'roi_list1' not in st.session_state:
|
67 |
-
st.session_state['roi_list1'] = []
|
68 |
-
if "all_rois1" not in st.session_state:
|
69 |
-
st.session_state['all_rois1'] = []
|
70 |
-
classes = model.names
|
71 |
-
|
72 |
-
done_1 = st.button('Selection Done')
|
73 |
-
|
74 |
-
while len(st.session_state["all_rois1"]) < st.session_state['n']:
|
75 |
-
cap = cv2.VideoCapture('temp_PS1.mp4')
|
76 |
-
while not done_1:
|
77 |
-
ret,frame=cap.read()
|
78 |
-
cv2.putText(frame,'SELECT ROI',(100,100),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),4)
|
79 |
-
if not ret:
|
80 |
-
st.write('ROI selection has concluded')
|
81 |
-
break
|
82 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
83 |
-
value = streamlit_image_coordinates(frame,key='numpy',width=750)
|
84 |
-
st.session_state["roi_list1"].append([int(value['x']*2.55),int(value['y']*2.55)])
|
85 |
-
st.write(st.session_state["roi_list1"])
|
86 |
-
if cv2.waitKey(0)&0xFF==27:
|
87 |
-
break
|
88 |
-
cap.release()
|
89 |
-
st.session_state["all_rois1"].append(st.session_state["roi_list1"])
|
90 |
-
st.session_state["roi_list1"] = []
|
91 |
-
done_1 = False
|
92 |
-
|
93 |
-
st.write('ROI indices: ',st.session_state["all_rois1"][0])
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
cap = cv2.VideoCapture('temp_PS1.MP4')
|
98 |
-
st.write("Detection started")
|
99 |
-
st.session_state['fps'] = cap.get(cv2.CAP_PROP_FPS)
|
100 |
-
st.write(f"FPS OF VIDEO: {st.session_state['fps']}")
|
101 |
-
avg_list = []
|
102 |
-
count = 0
|
103 |
-
frame_placeholder = st.empty()
|
104 |
-
st.session_state["data1"] = {}
|
105 |
-
for i in range(len(st.session_state["all_rois1"])):
|
106 |
-
st.session_state["data1"][f"ROI{i}"] = []
|
107 |
-
while cap.isOpened():
|
108 |
-
ret,frame=cap.read()
|
109 |
-
if not ret:
|
110 |
-
break
|
111 |
-
count += 1
|
112 |
-
if count % 3 != 0:
|
113 |
-
continue
|
114 |
-
k = 0
|
115 |
-
for roi_list_here1 in st.session_state["all_rois1"]:
|
116 |
-
max = [0,0]
|
117 |
-
min = [10000,10000]
|
118 |
-
roi_list_here = roi_list_here1[1:]
|
119 |
-
for i in range(len(roi_list_here)):
|
120 |
-
if roi_list_here[i][0] > max[0]:
|
121 |
-
max[0] = roi_list_here[i][0]
|
122 |
-
if roi_list_here[i][1] > max[1]:
|
123 |
-
max[1] = roi_list_here[i][1]
|
124 |
-
if roi_list_here[i][0] < min[0]:
|
125 |
-
min[0] = roi_list_here[i][0]
|
126 |
-
if roi_list_here[i][1] < min[1]:
|
127 |
-
min[1] = roi_list_here[i][1]
|
128 |
-
frame_cropped = frame[min[1]:max[1],min[0]:max[0]]
|
129 |
-
roi_corners = np.array([roi_list_here],dtype=np.int32)
|
130 |
-
mask = np.zeros(frame.shape,dtype=np.uint8)
|
131 |
-
mask.fill(255)
|
132 |
-
channel_count = frame.shape[2]
|
133 |
-
ignore_mask_color = (255,)*channel_count
|
134 |
-
cv2.fillPoly(mask,roi_corners,0)
|
135 |
-
mask_cropped = mask[min[1]:max[1],min[0]:max[0]]
|
136 |
-
roi = cv2.bitwise_or(frame_cropped,mask_cropped)
|
137 |
-
|
138 |
-
#roi = frame[roi_list_here[0][1]:roi_list_here[1][1],roi_list_here[0][0]:roi_list_here[1][0]]
|
139 |
-
number = []
|
140 |
-
results = model.predict(roi)
|
141 |
-
for r in results:
|
142 |
-
boxes = r.boxes
|
143 |
-
counter = 0
|
144 |
-
for box in boxes:
|
145 |
-
counter += 1
|
146 |
-
name = classes[box.cls.numpy()[0]]
|
147 |
-
conf = str(round(box.conf.numpy()[0],2))
|
148 |
-
text = name+""+conf
|
149 |
-
bbox = box.xyxy[0].numpy()
|
150 |
-
cv2.rectangle(frame,(int(bbox[0])+min[0],int(bbox[1])+min[1]),(int(bbox[2])+min[0],int(bbox[3])+min[1]),(0,255,0),2)
|
151 |
-
cv2.putText(frame,text,(int(bbox[0])+min[0],int(bbox[1])+min[1]-5),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)
|
152 |
-
number.append(counter)
|
153 |
-
avg = sum(number)/len(number)
|
154 |
-
stats = str(round(avg,2))
|
155 |
-
if count%10 == 0:
|
156 |
-
st.session_state["data1"][f"ROI{k}"].append(avg)
|
157 |
-
k+=1
|
158 |
-
cv2.putText(frame,stats,(min[0],min[1]),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,0),4)
|
159 |
-
cv2.polylines(frame,roi_corners,True,(255,0,0),2)
|
160 |
-
cv2.putText(frame,'The average number of vehicles in the Regions of Interest',(100,100),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),4)
|
161 |
-
frame_placeholder.image(frame,channels='BGR')
|
162 |
-
cap.release()
|
163 |
-
df = pd.DataFrame(st.session_state["data1"])
|
164 |
-
df.to_csv('PS1.csv', sep='\t', encoding='utf-8')
|
165 |
-
else:
|
166 |
-
st.error('PLEASE UPLOAD AN IMAGE OF THE FORMAT JPG,JPEG OR PNG', icon="🚨")
|
167 |
-
|
168 |
-
elif page == "PS3":
|
169 |
-
uploaded_file1 = st.file_uploader("Choose a video...", type=["mp4", "mpeg"])
|
170 |
-
if uploaded_file1 is not None:
|
171 |
-
g = io.BytesIO(uploaded_file1.read())
|
172 |
-
temporary_location = "temp_PS2.mp4"
|
173 |
-
|
174 |
-
with open(temporary_location, 'wb') as out:
|
175 |
-
out.write(g.read())
|
176 |
-
out.close()
|
177 |
-
model1 = YOLO("yolov8n.pt")
|
178 |
-
model2 = YOLO("best.pt")
|
179 |
-
if 'roi_list2' not in st.session_state:
|
180 |
-
st.session_state['roi_list2'] = []
|
181 |
-
if "all_rois2" not in st.session_state:
|
182 |
-
st.session_state['all_rois2'] = []
|
183 |
-
classes = model1.names
|
184 |
-
|
185 |
-
done_2 = st.button('Selection Done')
|
186 |
-
|
187 |
-
while len(st.session_state["all_rois2"]) < st.session_state['n']:
|
188 |
-
cap = cv2.VideoCapture('temp_PS2.mp4')
|
189 |
-
while not done_2:
|
190 |
-
ret,frame=cap.read()
|
191 |
-
cv2.putText(frame,'SELECT ROI',(100,100),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),4)
|
192 |
-
if not ret:
|
193 |
-
st.write('ROI selection has concluded')
|
194 |
-
break
|
195 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
196 |
-
value = streamlit_image_coordinates(frame,key='numpy',width=750)
|
197 |
-
st.session_state["roi_list2"].append([int(value['x']*2.5),int(value['y']*2.5)])
|
198 |
-
st.write(st.session_state["roi_list2"])
|
199 |
-
if cv2.waitKey(0)&0xFF==27:
|
200 |
-
break
|
201 |
-
cap.release()
|
202 |
-
st.session_state["all_rois2"].append(st.session_state["roi_list2"])
|
203 |
-
st.session_state["roi_list2"] = []
|
204 |
-
done_2 = False
|
205 |
-
|
206 |
-
st.write('ROI indices: ',st.session_state["all_rois2"][0])
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
cap = cv2.VideoCapture('temp_PS2.MP4')
|
211 |
-
st.write("Detection started")
|
212 |
-
avg_list = []
|
213 |
-
count = 0
|
214 |
-
frame_placeholder = st.empty()
|
215 |
-
st.session_state.data = {}
|
216 |
-
for i in range(len(st.session_state["all_rois2"])):
|
217 |
-
st.session_state["data"][f"ROI{i}"] = []
|
218 |
-
for i in range(len(st.session_state['all_rois2'])):
|
219 |
-
st.session_state.data[f"ROI{i}"] = []
|
220 |
-
while cap.isOpened():
|
221 |
-
ret,frame=cap.read()
|
222 |
-
if not ret:
|
223 |
-
break
|
224 |
-
count += 1
|
225 |
-
if count % 3 != 0:
|
226 |
-
continue
|
227 |
-
# rois = []
|
228 |
-
k = 0
|
229 |
-
for roi_list_here1 in st.session_state["all_rois2"]:
|
230 |
-
max = [0,0]
|
231 |
-
min = [10000,10000]
|
232 |
-
roi_list_here = roi_list_here1[1:]
|
233 |
-
for i in range(len(roi_list_here)-1):
|
234 |
-
if roi_list_here[i][0] > max[0]:
|
235 |
-
max[0] = roi_list_here[i][0]
|
236 |
-
if roi_list_here[i][1] > max[1]:
|
237 |
-
max[1] = roi_list_here[i][1]
|
238 |
-
if roi_list_here[i][0] < min[0]:
|
239 |
-
min[0] = roi_list_here[i][0]
|
240 |
-
if roi_list_here[i][1] < min[1]:
|
241 |
-
min[1] = roi_list_here[i][1]
|
242 |
-
frame_cropped = frame[min[1]:max[1],min[0]:max[0]]
|
243 |
-
roi_corners = np.array([roi_list_here],dtype=np.int32)
|
244 |
-
mask = np.zeros(frame.shape,dtype=np.uint8)
|
245 |
-
mask.fill(255)
|
246 |
-
channel_count = frame.shape[2]
|
247 |
-
ignore_mask_color = (255,)*channel_count
|
248 |
-
cv2.fillPoly(mask,roi_corners,0)
|
249 |
-
mask_cropped = mask[min[1]:max[1],min[0]:max[0]]
|
250 |
-
roi = cv2.bitwise_or(frame_cropped,mask_cropped)
|
251 |
-
|
252 |
-
#roi = frame[roi_list_here[0][1]:roi_list_here[1][1],roi_list_here[0][0]:roi_list_here[1][0]]
|
253 |
-
number = []
|
254 |
-
results = model1.predict(roi)
|
255 |
-
results_pothole = model2.predict(source=frame)
|
256 |
-
for r in results:
|
257 |
-
boxes = r.boxes
|
258 |
-
counter = 0
|
259 |
-
for box in boxes:
|
260 |
-
counter += 1
|
261 |
-
name = classes[box.cls.numpy()[0]]
|
262 |
-
conf = str(round(box.conf.numpy()[0],2))
|
263 |
-
text = name+conf
|
264 |
-
bbox = box.xyxy[0].numpy()
|
265 |
-
cv2.rectangle(frame,(int(bbox[0])+min[0],int(bbox[1])+min[1]),(int(bbox[2])+min[0],int(bbox[3])+min[1]),(0,255,0),2)
|
266 |
-
cv2.putText(frame,text,(int(bbox[0])+min[0],int(bbox[1])+min[1]-5),cv2.FONT_HERSHEY_SIMPLEX, 0.4,(0,0,255),2)
|
267 |
-
number.append(counter)
|
268 |
-
for r in results_pothole:
|
269 |
-
masks = r.masks
|
270 |
-
boxes = r.boxes.cpu().numpy()
|
271 |
-
xyxys = boxes.xyxy
|
272 |
-
confs = boxes.conf
|
273 |
-
if masks is not None:
|
274 |
-
shapes = np.ones_like(frame)
|
275 |
-
for mask,conf,xyxy in zip(masks,confs,xyxys):
|
276 |
-
polygon = mask.xy[0]
|
277 |
-
if conf >= 0.49 and len(polygon)>=3:
|
278 |
-
cv2.fillPoly(shapes,pts=np.int32([polygon]),color=(0,0,255,0.5))
|
279 |
-
frame = cv2.addWeighted(frame,0.7,shapes,0.3,gamma=0)
|
280 |
-
cv2.rectangle(frame,(int(xyxy[0]),int(xyxy[1])),(int(xyxy[2]),int(xyxy[3])),(0,0,255),2)
|
281 |
-
cv2.putText(frame,'Pothole '+str(conf),(int(xyxy[0]),int(xyxy[1])-5),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)
|
282 |
-
|
283 |
-
avg = sum(number)/len(number)
|
284 |
-
stats = str(round(avg,2))
|
285 |
-
if count % 10 == 0:
|
286 |
-
st.session_state.data[f"ROI{k}"].append(avg)
|
287 |
-
k+=1
|
288 |
-
cv2.putText(frame,stats,(min[0],min[1]),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,0),4)
|
289 |
-
cv2.polylines(frame,roi_corners,True,(255,0,0),2)
|
290 |
-
if counter >= 5:
|
291 |
-
cv2.putText(frame,'!!CONGESTION MORE THAN '+str(counter)+' Objects',(min[0]+20,min[1]+20),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,0),4)
|
292 |
-
cv2.polylines(frame,roi_corners,True,(255,0,0),2)
|
293 |
-
cv2.putText(frame,'Objects in the Regions of Interest',(100,100),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),4)
|
294 |
-
frame_placeholder.image(frame,channels='BGR')
|
295 |
-
cap.release()
|
296 |
-
|
297 |
-
df = pd.DataFrame(st.session_state.data)
|
298 |
-
df.to_csv('PS2.csv', sep='\t', encoding='utf-8')
|
299 |
-
|
300 |
-
else:
|
301 |
-
st.error('PLEASE UPLOAD AN IMAGE OF THE FORMAT JPG,JPEG OR PNG', icon="🚨")
|
302 |
-
|
303 |
-
elif page == "PS2":
|
304 |
-
st.header("CLICK ON RUN SCRIPT TO START A TRAFFIC SIMULATION")
|
305 |
-
script = st.button("RUN SCRIPT")
|
306 |
-
st.session_state.con = -1
|
307 |
-
if script:
|
308 |
-
st.session_state.con += 1
|
309 |
-
import gymnasium as gym
|
310 |
-
import sumo_rl
|
311 |
-
import os
|
312 |
-
from stable_baselines3 import DQN
|
313 |
-
from stable_baselines3.common.vec_env import DummyVecEnv
|
314 |
-
from stable_baselines3.common.evaluation import evaluate_policy
|
315 |
-
from sumo_rl import SumoEnvironment
|
316 |
-
env = gym.make('sumo-rl-v0',
|
317 |
-
net_file='single-intersection.net.xml',
|
318 |
-
route_file='single-intersection-gen.rou.xml',
|
319 |
-
out_csv_name='output',
|
320 |
-
use_gui=True,
|
321 |
-
single_agent=True,
|
322 |
-
num_seconds=10000)
|
323 |
-
model1 = DQN.load('DQN_MODEL3.zip',env=env)
|
324 |
-
one,two = evaluate_policy(model1,env = env,n_eval_episodes=5,render=True)
|
325 |
-
st.write("Evaluation Results: ",one,two)
|
326 |
-
import matplotlib.pyplot as plt
|
327 |
-
def eval_plot(path,metric,path_compare = None):
|
328 |
-
data = pd.read_csv(path)
|
329 |
-
if path_compare is not None:
|
330 |
-
data1 = pd.read_csv(path_compare)
|
331 |
-
x = []
|
332 |
-
for i in range(0,len(data)):
|
333 |
-
x.append(i)
|
334 |
-
|
335 |
-
y = data[metric]
|
336 |
-
y_1 = pd.to_numeric(y)
|
337 |
-
y_arr = np.array(y_1)
|
338 |
-
if path_compare is not None:
|
339 |
-
y2 = data1[metric]
|
340 |
-
y_2 = pd.to_numeric(y2)
|
341 |
-
y_arr2 = np.array(y_2)
|
342 |
-
|
343 |
-
x_arr = np.array(x)
|
344 |
-
|
345 |
-
fig = plt.figure()
|
346 |
-
ax1 = fig.add_subplot(2, 1, 1)
|
347 |
-
ax1.set_title(metric)
|
348 |
-
if path_compare is not None:
|
349 |
-
ax2 = fig.add_subplot(2, 1, 2,sharey=ax1)
|
350 |
-
ax2.set_title('compare '+metric)
|
351 |
-
|
352 |
-
ax1.plot(x_arr,y_arr)
|
353 |
-
|
354 |
-
if path_compare is not None:
|
355 |
-
ax2.plot(x_arr,y_arr2)
|
356 |
-
|
357 |
-
return fig
|
358 |
-
for i in range(1,2):
|
359 |
-
st.pyplot(eval_plot(f'output_conn{st.session_state.con}_ep{i}.csv','system_mean_waiting_time'))
|
360 |
-
st.pyplot(eval_plot(f'output_conn{st.session_state.con}_ep{i}.csv','agents_total_accumulated_waiting_time'))
|
361 |
-
|
362 |
-
elif page == "Chat with Results":
|
363 |
-
st.title('Chat with the Results')
|
364 |
-
st.write("Please upload the relevant CSV data to get started")
|
365 |
-
reload = st.button('Reload')
|
366 |
-
if 'isran' not in st.session_state or reload == True:
|
367 |
-
st.session_state['isran'] = False
|
368 |
-
|
369 |
-
|
370 |
-
uploaded_file = st.file_uploader('Choose your .csv file', type=["csv"])
|
371 |
-
if uploaded_file is not None and st.session_state['isran'] == False:
|
372 |
-
with open("temp.csv", "wb") as f:
|
373 |
-
f.write(uploaded_file.getvalue())
|
374 |
-
loader = CSVLoader('temp.csv')
|
375 |
-
docs = loader.load()
|
376 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 200)
|
377 |
-
splits = text_splitter.split_documents(docs)
|
378 |
-
|
379 |
-
embeddings = OllamaEmbeddings(model='mistral')
|
380 |
-
st.session_state.vectorstore = Chroma.from_documents(documents=splits,embedding=embeddings)
|
381 |
-
st.session_state['isran'] = True
|
382 |
-
|
383 |
-
if st.session_state['isran'] == True:
|
384 |
-
st.write("Embedding created")
|
385 |
-
|
386 |
-
def fdocs(docs):
|
387 |
-
return "\n\n".join(doc.page_content for doc in docs)
|
388 |
-
|
389 |
-
def llm(question,context):
|
390 |
-
formatted_prompt = f"Question: {question}\n\nContext:{context}"
|
391 |
-
response = ollama.chat(model='mistral', messages=[
|
392 |
-
{
|
393 |
-
'role': 'user',
|
394 |
-
'content': formatted_prompt
|
395 |
-
},
|
396 |
-
])
|
397 |
-
return response['message']['content']
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
def rag_chain(question):
|
402 |
-
retriever = st.session_state.vectorstore.as_retriever()
|
403 |
-
retrieved_docs = retriever.invoke(question)
|
404 |
-
formatted_context = fdocs(retrieved_docs)
|
405 |
-
return llm(question,formatted_context)
|
406 |
-
|
407 |
-
if 'messages' not in st.session_state:
|
408 |
-
st.session_state.messages = []
|
409 |
-
|
410 |
-
for message in st.session_state.messages:
|
411 |
-
st.chat_message(message['role']).markdown(message['content'])
|
412 |
-
|
413 |
-
prompt = st.chat_input("Say something")
|
414 |
-
response = rag_chain(prompt)
|
415 |
-
if prompt:
|
416 |
-
st.chat_message('user').markdown(prompt)
|
417 |
-
st.session_state.messages.append({'role':'user','content':prompt})
|
418 |
-
st.session_state.messages.append({'role':'AI','content':response})
|
419 |
-
st.chat_message('AI').markdown(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|