Spaces:
Sleeping
Sleeping
File size: 5,963 Bytes
d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 a674527 dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f dd217c7 d37849f 9eac142 dd217c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import sys
import os
sys.path.append(os.getcwd())
import time
import random
from tqdm import tqdm
import argparse
import torch
import torchaudio
from accelerate import Accelerator
from vocos import Vocos
from model import CFM, UNetT, DiT
from model.utils import (
load_checkpoint,
get_tokenizer,
get_seedtts_testset_metainfo,
get_librispeech_test_clean_metainfo,
get_inference_prompt,
)
accelerator = Accelerator()
device = f"cuda:{accelerator.process_index}"
# --------------------- Dataset Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
tokenizer = "pinyin"
# ---------------------- infer setting ---------------------- #
parser = argparse.ArgumentParser(description="batch inference")
parser.add_argument("-s", "--seed", default=None, type=int)
parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
parser.add_argument("-n", "--expname", required=True)
parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
parser.add_argument("-nfe", "--nfestep", default=32, type=int)
parser.add_argument("-o", "--odemethod", default="euler")
parser.add_argument("-ss", "--swaysampling", default=-1, type=float)
parser.add_argument("-t", "--testset", required=True)
args = parser.parse_args()
seed = args.seed
dataset_name = args.dataset
exp_name = args.expname
ckpt_step = args.ckptstep
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt"
nfe_step = args.nfestep
ode_method = args.odemethod
sway_sampling_coef = args.swaysampling
testset = args.testset
infer_batch_size = 1 # max frames. 1 for ddp single inference (recommended)
cfg_strength = 2.0
speed = 1.0
use_truth_duration = False
no_ref_audio = False
if exp_name == "F5TTS_Base":
model_cls = DiT
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
elif exp_name == "E2TTS_Base":
model_cls = UNetT
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
if testset == "ls_pc_test_clean":
metalst = "data/librispeech_pc_test_clean_cross_sentence.lst"
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)
elif testset == "seedtts_test_zh":
metalst = "data/seedtts_testset/zh/meta.lst"
metainfo = get_seedtts_testset_metainfo(metalst)
elif testset == "seedtts_test_en":
metalst = "data/seedtts_testset/en/meta.lst"
metainfo = get_seedtts_testset_metainfo(metalst)
# path to save genereted wavs
if seed is None:
seed = random.randint(-10000, 10000)
output_dir = (
f"results/{exp_name}_{ckpt_step}/{testset}/"
f"seed{seed}_{ode_method}_nfe{nfe_step}"
f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
f"_cfg{cfg_strength}_speed{speed}"
f"{'_gt-dur' if use_truth_duration else ''}"
f"{'_no-ref-audio' if no_ref_audio else ''}"
)
# -------------------------------------------------#
use_ema = True
prompts_all = get_inference_prompt(
metainfo,
speed=speed,
tokenizer=tokenizer,
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
target_rms=target_rms,
use_truth_duration=use_truth_duration,
infer_batch_size=infer_batch_size,
)
# Vocoder model
local = False
if local:
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
vocos.load_state_dict(state_dict)
vocos.eval()
else:
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
# Tokenizer
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
# Model
model = CFM(
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=dict(
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
if not os.path.exists(output_dir) and accelerator.is_main_process:
os.makedirs(output_dir)
# start batch inference
accelerator.wait_for_everyone()
start = time.time()
with accelerator.split_between_processes(prompts_all) as prompts:
for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
ref_mels = ref_mels.to(device)
ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)
# Inference
with torch.inference_mode():
generated, _ = model.sample(
cond=ref_mels,
text=final_text_list,
duration=total_mel_lens,
lens=ref_mel_lens,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
no_ref_audio=no_ref_audio,
seed=seed,
)
# Final result
for i, gen in enumerate(generated):
gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
gen_mel_spec = gen.permute(0, 2, 1)
generated_wave = vocos.decode(gen_mel_spec.cpu())
if ref_rms_list[i] < target_rms:
generated_wave = generated_wave * ref_rms_list[i] / target_rms
torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
timediff = time.time() - start
print(f"Done batch inference in {timediff / 60 :.2f} minutes.")
|