Spaces:
Sleeping
Sleeping
File size: 1,633 Bytes
4dab15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
# Evaluation
Install packages for evaluation:
```bash
pip install -e .[eval]
```
## Generating Samples for Evaluation
### Prepare Test Datasets
1. *Seed-TTS testset*: Download from [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval).
2. *LibriSpeech test-clean*: Download from [OpenSLR](http://www.openslr.org/12/).
3. Unzip the downloaded datasets and place them in the `data/` directory.
4. Update the path for *LibriSpeech test-clean* data in `src/f5_tts/eval/eval_infer_batch.py`
5. Our filtered LibriSpeech-PC 4-10s subset: `data/librispeech_pc_test_clean_cross_sentence.lst`
### Batch Inference for Test Set
To run batch inference for evaluations, execute the following commands:
```bash
# batch inference for evaluations
accelerate config # if not set before
bash src/f5_tts/eval/eval_infer_batch.sh
```
## Objective Evaluation on Generated Results
### Download Evaluation Model Checkpoints
1. Chinese ASR Model: [Paraformer-zh](https://huggingface.co/funasr/paraformer-zh)
2. English ASR Model: [Faster-Whisper](https://huggingface.co/Systran/faster-whisper-large-v3)
3. WavLM Model: Download from [Google Drive](https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9LlbtEGP/view).
Then update in the following scripts with the paths you put evaluation model ckpts to.
### Objective Evaluation
Update the path with your batch-inferenced results, and carry out WER / SIM evaluations:
```bash
# Evaluation for Seed-TTS test set
python src/f5_tts/eval/eval_seedtts_testset.py
# Evaluation for LibriSpeech-PC test-clean (cross-sentence)
python src/f5_tts/eval/eval_librispeech_test_clean.py
``` |