Spaces:
Sleeping
Sleeping
File size: 12,988 Bytes
4dab15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
# A unified script for inference process
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
import hashlib
import re
import tempfile
from importlib.resources import files
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt
import numpy as np
import torch
import torchaudio
import tqdm
from pydub import AudioSegment, silence
from transformers import pipeline
from vocos import Vocos
from f5_tts.model import CFM
from f5_tts.model.utils import (
get_tokenizer,
convert_char_to_pinyin,
)
_ref_audio_cache = {}
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
# -----------------------------------------
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
cross_fade_duration = 0.15
ode_method = "euler"
nfe_step = 32 # 16, 32
cfg_strength = 2.0
sway_sampling_coef = -1.0
speed = 1.0
fix_duration = None
# -----------------------------------------
# chunk text into smaller pieces
def chunk_text(text, max_chars=135):
"""
Splits the input text into chunks, each with a maximum number of characters.
Args:
text (str): The text to be split.
max_chars (int): The maximum number of characters per chunk.
Returns:
List[str]: A list of text chunks.
"""
chunks = []
current_chunk = ""
# Split the text into sentences based on punctuation followed by whitespace
sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text)
for sentence in sentences:
if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars:
current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
# load vocoder
def load_vocoder(is_local=False, local_path="", device=device):
if is_local:
print(f"Load vocos from local path {local_path}")
vocos = Vocos.from_hparams(f"{local_path}/config.yaml")
state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location=device)
vocos.load_state_dict(state_dict)
vocos.eval()
else:
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
return vocos
# load asr pipeline
asr_pipe = None
def initialize_asr_pipeline(device=device):
global asr_pipe
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device=device,
)
# load model checkpoint for inference
def load_checkpoint(model, ckpt_path, device, use_ema=True):
if device == "cuda":
model = model.half()
ckpt_type = ckpt_path.split(".")[-1]
if ckpt_type == "safetensors":
from safetensors.torch import load_file
checkpoint = load_file(ckpt_path)
else:
checkpoint = torch.load(ckpt_path, weights_only=True)
if use_ema:
if ckpt_type == "safetensors":
checkpoint = {"ema_model_state_dict": checkpoint}
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "step"]
}
model.load_state_dict(checkpoint["model_state_dict"])
else:
if ckpt_type == "safetensors":
checkpoint = {"model_state_dict": checkpoint}
model.load_state_dict(checkpoint["model_state_dict"])
return model.to(device)
# load model for inference
def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_method, use_ema=True, device=device):
if vocab_file == "":
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
tokenizer = "custom"
print("\nvocab : ", vocab_file)
print("tokenizer : ", tokenizer)
print("model : ", ckpt_path, "\n")
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer)
model = CFM(
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=dict(
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
return model
# preprocess reference audio and text
def preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=print, device=device):
show_info("Converting audio...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
if len(non_silent_wave) > 10000 and len(non_silent_wave + non_silent_seg) > 18000:
show_info("Audio is over 18s, clipping short.")
break
non_silent_wave += non_silent_seg
aseg = non_silent_wave
aseg.export(f.name, format="wav")
ref_audio = f.name
# Compute a hash of the reference audio file
with open(ref_audio, "rb") as audio_file:
audio_data = audio_file.read()
audio_hash = hashlib.md5(audio_data).hexdigest()
global _ref_audio_cache
if audio_hash in _ref_audio_cache:
# Use cached reference text
show_info("Using cached reference text...")
ref_text = _ref_audio_cache[audio_hash]
else:
if not ref_text.strip():
global asr_pipe
if asr_pipe is None:
initialize_asr_pipeline(device=device)
show_info("No reference text provided, transcribing reference audio...")
ref_text = asr_pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe"},
return_timestamps=False,
)["text"].strip()
show_info("Finished transcription")
else:
show_info("Using custom reference text...")
# Cache the transcribed text
_ref_audio_cache[audio_hash] = ref_text
# Ensure ref_text ends with a proper sentence-ending punctuation
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
if ref_text.endswith("."):
ref_text += " "
else:
ref_text += ". "
return ref_audio, ref_text
# infer process: chunk text -> infer batches [i.e. infer_batch_process()]
def infer_process(
ref_audio,
ref_text,
gen_text,
model_obj,
show_info=print,
progress=tqdm,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
speed=speed,
fix_duration=fix_duration,
device=device,
):
# Split the input text into batches
audio, sr = torchaudio.load(ref_audio)
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
for i, gen_text in enumerate(gen_text_batches):
print(f"gen_text {i}", gen_text)
show_info(f"Generating audio in {len(gen_text_batches)} batches...")
return infer_batch_process(
(audio, sr),
ref_text,
gen_text_batches,
model_obj,
progress=progress,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
speed=speed,
fix_duration=fix_duration,
device=device,
)
# infer batches
def infer_batch_process(
ref_audio,
ref_text,
gen_text_batches,
model_obj,
progress=tqdm,
target_rms=0.1,
cross_fade_duration=0.15,
nfe_step=32,
cfg_strength=2.0,
sway_sampling_coef=-1,
speed=1,
fix_duration=None,
device=None,
):
audio, sr = ref_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
generated_waves = []
spectrograms = []
if len(ref_text[-1].encode("utf-8")) == 1:
ref_text = ref_text + " "
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
# Prepare the text
text_list = [ref_text + gen_text]
final_text_list = convert_char_to_pinyin(text_list)
ref_audio_len = audio.shape[-1] // hop_length
if fix_duration is not None:
duration = int(fix_duration * target_sample_rate / hop_length)
else:
# Calculate duration
ref_text_len = len(ref_text.encode("utf-8"))
gen_text_len = len(gen_text.encode("utf-8"))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# inference
with torch.inference_mode():
generated, _ = model_obj.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated.to(torch.float32)
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = generated.permute(0, 2, 1)
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# wav -> numpy
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
spectrograms.append(generated_mel_spec[0].cpu().numpy())
# Combine all generated waves with cross-fading
if cross_fade_duration <= 0:
# Simply concatenate
final_wave = np.concatenate(generated_waves)
else:
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave
next_wave = generated_waves[i]
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
cross_fade_samples = int(cross_fade_duration * target_sample_rate)
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
if cross_fade_samples <= 0:
# No overlap possible, concatenate
final_wave = np.concatenate([prev_wave, next_wave])
continue
# Overlapping parts
prev_overlap = prev_wave[-cross_fade_samples:]
next_overlap = next_wave[:cross_fade_samples]
# Fade out and fade in
fade_out = np.linspace(1, 0, cross_fade_samples)
fade_in = np.linspace(0, 1, cross_fade_samples)
# Cross-faded overlap
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
# Combine
new_wave = np.concatenate(
[prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]]
)
final_wave = new_wave
# Create a combined spectrogram
combined_spectrogram = np.concatenate(spectrograms, axis=1)
return final_wave, target_sample_rate, combined_spectrogram
# remove silence from generated wav
def remove_silence_for_generated_wav(filename):
aseg = AudioSegment.from_file(filename)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
aseg.export(filename, format="wav")
# save spectrogram
def save_spectrogram(spectrogram, path):
plt.figure(figsize=(12, 4))
plt.imshow(spectrogram, origin="lower", aspect="auto")
plt.colorbar()
plt.savefig(path)
plt.close()
|