Spaces:
Sleeping
Sleeping
File size: 19,391 Bytes
4dab15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 |
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""
from __future__ import annotations
from typing import Optional
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from x_transformers.x_transformers import apply_rotary_pos_emb
# raw wav to mel spec
class MelSpec(nn.Module):
def __init__(
self,
filter_length=1024,
hop_length=256,
win_length=1024,
n_mel_channels=100,
target_sample_rate=24_000,
normalize=False,
power=1,
norm=None,
center=True,
):
super().__init__()
self.n_mel_channels = n_mel_channels
self.mel_stft = torchaudio.transforms.MelSpectrogram(
sample_rate=target_sample_rate,
n_fft=filter_length,
win_length=win_length,
hop_length=hop_length,
n_mels=n_mel_channels,
power=power,
center=center,
normalized=normalize,
norm=norm,
)
self.register_buffer("dummy", torch.tensor(0), persistent=False)
def forward(self, inp):
if len(inp.shape) == 3:
inp = inp.squeeze(1) # 'b 1 nw -> b nw'
assert len(inp.shape) == 2
if self.dummy.device != inp.device:
self.to(inp.device)
mel = self.mel_stft(inp)
mel = mel.clamp(min=1e-5).log()
return mel
# sinusoidal position embedding
class SinusPositionEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x, scale=1000):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
# convolutional position embedding
class ConvPositionEmbedding(nn.Module):
def __init__(self, dim, kernel_size=31, groups=16):
super().__init__()
assert kernel_size % 2 != 0
self.conv1d = nn.Sequential(
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
nn.Mish(),
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
nn.Mish(),
)
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
if mask is not None:
mask = mask[..., None]
x = x.masked_fill(~mask, 0.0)
x = x.permute(0, 2, 1)
x = self.conv1d(x)
out = x.permute(0, 2, 1)
if mask is not None:
out = out.masked_fill(~mask, 0.0)
return out
# rotary positional embedding related
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
theta *= theta_rescale_factor ** (dim / (dim - 2))
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return torch.cat([freqs_cos, freqs_sin], dim=-1)
def get_pos_embed_indices(start, length, max_pos, scale=1.0):
# length = length if isinstance(length, int) else length.max()
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
pos = (
start.unsqueeze(1)
+ (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long()
)
# avoid extra long error.
pos = torch.where(pos < max_pos, pos, max_pos - 1)
return pos
# Global Response Normalization layer (Instance Normalization ?)
class GRN(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
class ConvNeXtV2Block(nn.Module):
def __init__(
self,
dim: int,
intermediate_dim: int,
dilation: int = 1,
):
super().__init__()
padding = (dilation * (7 - 1)) // 2
self.dwconv = nn.Conv1d(
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
) # depthwise conv
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.grn = GRN(intermediate_dim)
self.pwconv2 = nn.Linear(intermediate_dim, dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
x = x.transpose(1, 2) # b n d -> b d n
x = self.dwconv(x)
x = x.transpose(1, 2) # b d n -> b n d
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
return residual + x
# AdaLayerNormZero
# return with modulated x for attn input, and params for later mlp modulation
class AdaLayerNormZero(nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(dim, dim * 6)
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb=None):
emb = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
# AdaLayerNormZero for final layer
# return only with modulated x for attn input, cuz no more mlp modulation
class AdaLayerNormZero_Final(nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(dim, dim * 2)
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb):
emb = self.linear(self.silu(emb))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
return x
# FeedForward
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
activation = nn.GELU(approximate=approximate)
project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
def forward(self, x):
return self.ff(x)
# Attention with possible joint part
# modified from diffusers/src/diffusers/models/attention_processor.py
class Attention(nn.Module):
def __init__(
self,
processor: JointAttnProcessor | AttnProcessor,
dim: int,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
context_dim: Optional[int] = None, # if not None -> joint attention
context_pre_only=None,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.processor = processor
self.dim = dim
self.heads = heads
self.inner_dim = dim_head * heads
self.dropout = dropout
self.context_dim = context_dim
self.context_pre_only = context_pre_only
self.to_q = nn.Linear(dim, self.inner_dim)
self.to_k = nn.Linear(dim, self.inner_dim)
self.to_v = nn.Linear(dim, self.inner_dim)
if self.context_dim is not None:
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
if self.context_pre_only is not None:
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(self.inner_dim, dim))
self.to_out.append(nn.Dropout(dropout))
if self.context_pre_only is not None and not self.context_pre_only:
self.to_out_c = nn.Linear(self.inner_dim, dim)
def forward(
self,
x: float["b n d"], # noised input x # noqa: F722
c: float["b n d"] = None, # context c # noqa: F722
mask: bool["b n"] | None = None, # noqa: F722
rope=None, # rotary position embedding for x
c_rope=None, # rotary position embedding for c
) -> torch.Tensor:
if c is not None:
return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope)
else:
return self.processor(self, x, mask=mask, rope=rope)
# Attention processor
class AttnProcessor:
def __init__(self):
pass
def __call__(
self,
attn: Attention,
x: float["b n d"], # noised input x # noqa: F722
mask: bool["b n"] | None = None, # noqa: F722
rope=None, # rotary position embedding
) -> torch.FloatTensor:
batch_size = x.shape[0]
# `sample` projections.
query = attn.to_q(x)
key = attn.to_k(x)
value = attn.to_v(x)
# apply rotary position embedding
if rope is not None:
freqs, xpos_scale = rope
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
# attention
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# mask. e.g. inference got a batch with different target durations, mask out the padding
if mask is not None:
attn_mask = mask
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
else:
attn_mask = None
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
x = x.to(query.dtype)
# linear proj
x = attn.to_out[0](x)
# dropout
x = attn.to_out[1](x)
if mask is not None:
mask = mask.unsqueeze(-1)
x = x.masked_fill(~mask, 0.0)
return x
# Joint Attention processor for MM-DiT
# modified from diffusers/src/diffusers/models/attention_processor.py
class JointAttnProcessor:
def __init__(self):
pass
def __call__(
self,
attn: Attention,
x: float["b n d"], # noised input x # noqa: F722
c: float["b nt d"] = None, # context c, here text # noqa: F722
mask: bool["b n"] | None = None, # noqa: F722
rope=None, # rotary position embedding for x
c_rope=None, # rotary position embedding for c
) -> torch.FloatTensor:
residual = x
batch_size = c.shape[0]
# `sample` projections.
query = attn.to_q(x)
key = attn.to_k(x)
value = attn.to_v(x)
# `context` projections.
c_query = attn.to_q_c(c)
c_key = attn.to_k_c(c)
c_value = attn.to_v_c(c)
# apply rope for context and noised input independently
if rope is not None:
freqs, xpos_scale = rope
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
if c_rope is not None:
freqs, xpos_scale = c_rope
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
# attention
query = torch.cat([query, c_query], dim=1)
key = torch.cat([key, c_key], dim=1)
value = torch.cat([value, c_value], dim=1)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# mask. e.g. inference got a batch with different target durations, mask out the padding
if mask is not None:
attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text)
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
else:
attn_mask = None
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
x = x.to(query.dtype)
# Split the attention outputs.
x, c = (
x[:, : residual.shape[1]],
x[:, residual.shape[1] :],
)
# linear proj
x = attn.to_out[0](x)
# dropout
x = attn.to_out[1](x)
if not attn.context_pre_only:
c = attn.to_out_c(c)
if mask is not None:
mask = mask.unsqueeze(-1)
x = x.masked_fill(~mask, 0.0)
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
return x, c
# DiT Block
class DiTBlock(nn.Module):
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1):
super().__init__()
self.attn_norm = AdaLayerNormZero(dim)
self.attn = Attention(
processor=AttnProcessor(),
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
)
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
def forward(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding
# pre-norm & modulation for attention input
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
# attention
attn_output = self.attn(x=norm, mask=mask, rope=rope)
# process attention output for input x
x = x + gate_msa.unsqueeze(1) * attn_output
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
ff_output = self.ff(norm)
x = x + gate_mlp.unsqueeze(1) * ff_output
return x
# MMDiT Block https://arxiv.org/abs/2403.03206
class MMDiTBlock(nn.Module):
r"""
modified from diffusers/src/diffusers/models/attention.py
notes.
_c: context related. text, cond, etc. (left part in sd3 fig2.b)
_x: noised input related. (right part)
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
"""
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
super().__init__()
self.context_pre_only = context_pre_only
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
self.attn_norm_x = AdaLayerNormZero(dim)
self.attn = Attention(
processor=JointAttnProcessor(),
dim=dim,
heads=heads,
dim_head=dim_head,
dropout=dropout,
context_dim=dim,
context_pre_only=context_pre_only,
)
if not context_pre_only:
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
else:
self.ff_norm_c = None
self.ff_c = None
self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding
# pre-norm & modulation for attention input
if self.context_pre_only:
norm_c = self.attn_norm_c(c, t)
else:
norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
# attention
x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
# process attention output for context c
if self.context_pre_only:
c = None
else: # if not last layer
c = c + c_gate_msa.unsqueeze(1) * c_attn_output
norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
c_ff_output = self.ff_c(norm_c)
c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
# process attention output for input x
x = x + x_gate_msa.unsqueeze(1) * x_attn_output
norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
x_ff_output = self.ff_x(norm_x)
x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
return c, x
# time step conditioning embedding
class TimestepEmbedding(nn.Module):
def __init__(self, dim, freq_embed_dim=256):
super().__init__()
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
def forward(self, timestep: float["b"]): # noqa: F821
time_hidden = self.time_embed(timestep)
time_hidden = time_hidden.to(timestep.dtype)
time = self.time_mlp(time_hidden) # b d
return time
|