Spaces:
Sleeping
Sleeping
File size: 4,579 Bytes
4dab15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
# generate audio text map for WenetSpeech4TTS
# evaluate for vocab size
import os
import sys
sys.path.append(os.getcwd())
import json
from concurrent.futures import ProcessPoolExecutor
from importlib.resources import files
from tqdm import tqdm
import torchaudio
from datasets import Dataset
from f5_tts.model.utils import convert_char_to_pinyin
def deal_with_sub_path_files(dataset_path, sub_path):
print(f"Dealing with: {sub_path}")
text_dir = os.path.join(dataset_path, sub_path, "txts")
audio_dir = os.path.join(dataset_path, sub_path, "wavs")
text_files = os.listdir(text_dir)
audio_paths, texts, durations = [], [], []
for text_file in tqdm(text_files):
with open(os.path.join(text_dir, text_file), "r", encoding="utf-8") as file:
first_line = file.readline().split("\t")
audio_nm = first_line[0]
audio_path = os.path.join(audio_dir, audio_nm + ".wav")
text = first_line[1].strip()
audio_paths.append(audio_path)
if tokenizer == "pinyin":
texts.extend(convert_char_to_pinyin([text], polyphone=polyphone))
elif tokenizer == "char":
texts.append(text)
audio, sample_rate = torchaudio.load(audio_path)
durations.append(audio.shape[-1] / sample_rate)
return audio_paths, texts, durations
def main():
assert tokenizer in ["pinyin", "char"]
audio_path_list, text_list, duration_list = [], [], []
executor = ProcessPoolExecutor(max_workers=max_workers)
futures = []
for dataset_path in dataset_paths:
sub_items = os.listdir(dataset_path)
sub_paths = [item for item in sub_items if os.path.isdir(os.path.join(dataset_path, item))]
for sub_path in sub_paths:
futures.append(executor.submit(deal_with_sub_path_files, dataset_path, sub_path))
for future in tqdm(futures, total=len(futures)):
audio_paths, texts, durations = future.result()
audio_path_list.extend(audio_paths)
text_list.extend(texts)
duration_list.extend(durations)
executor.shutdown()
if not os.path.exists("data"):
os.makedirs("data")
print(f"\nSaving to {save_dir} ...")
dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list})
dataset.save_to_disk(f"{save_dir}/raw", max_shard_size="2GB") # arrow format
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
json.dump(
{"duration": duration_list}, f, ensure_ascii=False
) # dup a json separately saving duration in case for DynamicBatchSampler ease
print("\nEvaluating vocab size (all characters and symbols / all phonemes) ...")
text_vocab_set = set()
for text in tqdm(text_list):
text_vocab_set.update(list(text))
# add alphabets and symbols (optional, if plan to ft on de/fr etc.)
if tokenizer == "pinyin":
text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)])
with open(f"{save_dir}/vocab.txt", "w") as f:
for vocab in sorted(text_vocab_set):
f.write(vocab + "\n")
print(f"\nFor {dataset_name}, sample count: {len(text_list)}")
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}\n")
if __name__ == "__main__":
max_workers = 32
tokenizer = "pinyin" # "pinyin" | "char"
polyphone = True
dataset_choice = 1 # 1: Premium, 2: Standard, 3: Basic
dataset_name = (
["WenetSpeech4TTS_Premium", "WenetSpeech4TTS_Standard", "WenetSpeech4TTS_Basic"][dataset_choice - 1]
+ "_"
+ tokenizer
)
dataset_paths = [
"<SOME_PATH>/WenetSpeech4TTS/Basic",
"<SOME_PATH>/WenetSpeech4TTS/Standard",
"<SOME_PATH>/WenetSpeech4TTS/Premium",
][-dataset_choice:]
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
print(f"\nChoose Dataset: {dataset_name}, will save to {save_dir}\n")
main()
# Results (if adding alphabets with accents and symbols):
# WenetSpeech4TTS Basic Standard Premium
# samples count 3932473 1941220 407494
# pinyin vocab size 1349 1348 1344 (no polyphone)
# - - 1459 (polyphone)
# char vocab size 5264 5219 5042
# vocab size may be slightly different due to jieba tokenizer and pypinyin (e.g. way of polyphoneme)
# please be careful if using pretrained model, make sure the vocab.txt is same
|