Spaces:
Sleeping
Sleeping
from model import CFM, UNetT, DiT, MMDiT, Trainer | |
from model.utils import get_tokenizer | |
from model.dataset import load_dataset | |
# -------------------------- Dataset Settings --------------------------- # | |
target_sample_rate = 24000 | |
n_mel_channels = 100 | |
hop_length = 256 | |
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom' | |
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt) | |
dataset_name = "Emilia_ZH_EN" | |
# -------------------------- Training Settings -------------------------- # | |
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base | |
learning_rate = 7.5e-5 | |
batch_size_per_gpu = 38400 # 8 GPUs, 8 * 38400 = 307200 | |
batch_size_type = "frame" # "frame" or "sample" | |
max_samples = 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models | |
grad_accumulation_steps = 1 # note: updates = steps / grad_accumulation_steps | |
max_grad_norm = 1. | |
epochs = 11 # use linear decay, thus epochs control the slope | |
num_warmup_updates = 20000 # warmup steps | |
save_per_updates = 50000 # save checkpoint per steps | |
last_per_steps = 5000 # save last checkpoint per steps | |
# model params | |
if exp_name == "F5TTS_Base": | |
wandb_resume_id = None | |
model_cls = DiT | |
model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4) | |
elif exp_name == "E2TTS_Base": | |
wandb_resume_id = None | |
model_cls = UNetT | |
model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4) | |
# ----------------------------------------------------------------------- # | |
def main(): | |
if tokenizer == "custom": | |
tokenizer_path = tokenizer_path | |
else: | |
tokenizer_path = dataset_name | |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer) | |
mel_spec_kwargs = dict( | |
target_sample_rate = target_sample_rate, | |
n_mel_channels = n_mel_channels, | |
hop_length = hop_length, | |
) | |
model = CFM( | |
transformer = model_cls( | |
**model_cfg, | |
text_num_embeds = vocab_size, | |
mel_dim = n_mel_channels | |
), | |
mel_spec_kwargs = mel_spec_kwargs, | |
vocab_char_map = vocab_char_map, | |
) | |
trainer = Trainer( | |
model, | |
epochs, | |
learning_rate, | |
num_warmup_updates = num_warmup_updates, | |
save_per_updates = save_per_updates, | |
checkpoint_path = f'ckpts/{exp_name}', | |
batch_size = batch_size_per_gpu, | |
batch_size_type = batch_size_type, | |
max_samples = max_samples, | |
grad_accumulation_steps = grad_accumulation_steps, | |
max_grad_norm = max_grad_norm, | |
wandb_project = "CFM-TTS", | |
wandb_run_name = exp_name, | |
wandb_resume_id = wandb_resume_id, | |
last_per_steps = last_per_steps, | |
) | |
train_dataset = load_dataset(dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs) | |
trainer.train(train_dataset, | |
resumable_with_seed = 666 # seed for shuffling dataset | |
) | |
if __name__ == '__main__': | |
main() | |