zero-shot-tts / inference-cli.py
mrfakename's picture
Upload folder using huggingface_hub
dd217c7 verified
raw
history blame
14.1 kB
import re
import torch
import torchaudio
import numpy as np
import tempfile
from einops import rearrange
from vocos import Vocos
from pydub import AudioSegment, silence
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (
load_checkpoint,
get_tokenizer,
convert_char_to_pinyin,
save_spectrogram,
)
from transformers import pipeline
import soundfile as sf
import tomli
import argparse
import tqdm
from pathlib import Path
parser = argparse.ArgumentParser(
prog="python3 inference-cli.py",
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
epilog="Specify options above to override one or more settings from config.",
)
parser.add_argument(
"-c",
"--config",
help="Configuration file. Default=cli-config.toml",
default="inference-cli.toml",
)
parser.add_argument(
"-m",
"--model",
help="F5-TTS | E2-TTS",
)
parser.add_argument(
"-r",
"--ref_audio",
type=str,
help="Reference audio file < 15 seconds."
)
parser.add_argument(
"-s",
"--ref_text",
type=str,
default="666",
help="Subtitle for the reference audio."
)
parser.add_argument(
"-t",
"--gen_text",
type=str,
help="Text to generate.",
)
parser.add_argument(
"-o",
"--output_dir",
type=str,
help="Path to output folder..",
)
parser.add_argument(
"--remove_silence",
help="Remove silence.",
)
args = parser.parse_args()
config = tomli.load(open(args.config, "rb"))
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
gen_text = args.gen_text if args.gen_text else config["gen_text"]
output_dir = args.output_dir if args.output_dir else config["output_dir"]
model = args.model if args.model else config["model"]
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
wave_path = Path(output_dir)/"out.wav"
spectrogram_path = Path(output_dir)/"out.png"
SPLIT_WORDS = [
"but", "however", "nevertheless", "yet", "still",
"therefore", "thus", "hence", "consequently",
"moreover", "furthermore", "additionally",
"meanwhile", "alternatively", "otherwise",
"namely", "specifically", "for example", "such as",
"in fact", "indeed", "notably",
"in contrast", "on the other hand", "conversely",
"in conclusion", "to summarize", "finally"
]
device = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
print(f"Using {device} device")
# --------------------- Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32 # 16, 32
cfg_strength = 2.0
ode_method = "euler"
sway_sampling_coef = -1.0
speed = 1.0
# fix_duration = 27 # None or float (duration in seconds)
fix_duration = None
def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
# ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
model = CFM(
transformer=model_cls(
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
),
mel_spec_kwargs=dict(
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
model = load_checkpoint(model, ckpt_path, device, use_ema = True)
return model
# load models
F5TTS_model_cfg = dict(
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
if len(text.encode('utf-8')) <= max_chars:
return [text]
if text[-1] not in ['。', '.', '!', '!', '?', '?']:
text += '.'
sentences = re.split('([。.!?!?])', text)
sentences = [''.join(i) for i in zip(sentences[0::2], sentences[1::2])]
batches = []
current_batch = ""
def split_by_words(text):
words = text.split()
current_word_part = ""
word_batches = []
for word in words:
if len(current_word_part.encode('utf-8')) + len(word.encode('utf-8')) + 1 <= max_chars:
current_word_part += word + ' '
else:
if current_word_part:
# Try to find a suitable split word
for split_word in split_words:
split_index = current_word_part.rfind(' ' + split_word + ' ')
if split_index != -1:
word_batches.append(current_word_part[:split_index].strip())
current_word_part = current_word_part[split_index:].strip() + ' '
break
else:
# If no suitable split word found, just append the current part
word_batches.append(current_word_part.strip())
current_word_part = ""
current_word_part += word + ' '
if current_word_part:
word_batches.append(current_word_part.strip())
return word_batches
for sentence in sentences:
if len(current_batch.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
current_batch += sentence
else:
# If adding this sentence would exceed the limit
if current_batch:
batches.append(current_batch)
current_batch = ""
# If the sentence itself is longer than max_chars, split it
if len(sentence.encode('utf-8')) > max_chars:
# First, try to split by colon
colon_parts = sentence.split(':')
if len(colon_parts) > 1:
for part in colon_parts:
if len(part.encode('utf-8')) <= max_chars:
batches.append(part)
else:
# If colon part is still too long, split by comma
comma_parts = re.split('[,,]', part)
if len(comma_parts) > 1:
current_comma_part = ""
for comma_part in comma_parts:
if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
current_comma_part += comma_part + ','
else:
if current_comma_part:
batches.append(current_comma_part.rstrip(','))
current_comma_part = comma_part + ','
if current_comma_part:
batches.append(current_comma_part.rstrip(','))
else:
# If no comma, split by words
batches.extend(split_by_words(part))
else:
# If no colon, split by comma
comma_parts = re.split('[,,]', sentence)
if len(comma_parts) > 1:
current_comma_part = ""
for comma_part in comma_parts:
if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
current_comma_part += comma_part + ','
else:
if current_comma_part:
batches.append(current_comma_part.rstrip(','))
current_comma_part = comma_part + ','
if current_comma_part:
batches.append(current_comma_part.rstrip(','))
else:
# If no comma, split by words
batches.extend(split_by_words(sentence))
else:
current_batch = sentence
if current_batch:
batches.append(current_batch)
return batches
def infer_batch(ref_audio, ref_text, gen_text_batches, model, remove_silence):
if model == "F5-TTS":
ema_model = load_model(model, "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
elif model == "E2-TTS":
ema_model = load_model(model, "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
audio, sr = ref_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
generated_waves = []
spectrograms = []
for i, gen_text in enumerate(tqdm.tqdm(gen_text_batches)):
# Prepare the text
if len(ref_text[-1].encode('utf-8')) == 1:
ref_text = ref_text + " "
text_list = [ref_text + gen_text]
final_text_list = convert_char_to_pinyin(text_list)
# Calculate duration
ref_audio_len = audio.shape[-1] // hop_length
zh_pause_punc = r"。,、;:?!"
ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# inference
with torch.inference_mode():
generated, _ = ema_model.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# wav -> numpy
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
spectrograms.append(generated_mel_spec[0].cpu().numpy())
# Combine all generated waves
final_wave = np.concatenate(generated_waves)
with open(wave_path, "wb") as f:
sf.write(f.name, final_wave, target_sample_rate)
# Remove silence
if remove_silence:
aseg = AudioSegment.from_file(f.name)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
aseg.export(f.name, format="wav")
print(f.name)
# Create a combined spectrogram
combined_spectrogram = np.concatenate(spectrograms, axis=1)
save_spectrogram(combined_spectrogram, spectrogram_path)
print(spectrogram_path)
def infer(ref_audio_orig, ref_text, gen_text, model, remove_silence, custom_split_words):
if not custom_split_words.strip():
custom_words = [word.strip() for word in custom_split_words.split(',')]
global SPLIT_WORDS
SPLIT_WORDS = custom_words
print(gen_text)
print("Converting audio...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
audio_duration = len(aseg)
if audio_duration > 15000:
print("Audio is over 15s, clipping to only first 15s.")
aseg = aseg[:15000]
aseg.export(f.name, format="wav")
ref_audio = f.name
if not ref_text.strip():
print("No reference text provided, transcribing reference audio...")
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device=device,
)
ref_text = pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe"},
return_timestamps=False,
)["text"].strip()
print("Finished transcription")
else:
print("Using custom reference text...")
# Split the input text into batches
audio, sr = torchaudio.load(ref_audio)
max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (30 - audio.shape[-1] / sr))
gen_text_batches = split_text_into_batches(gen_text, max_chars=max_chars)
print('ref_text', ref_text)
for i, gen_text in enumerate(gen_text_batches):
print(f'gen_text {i}', gen_text)
print(f"Generating audio using {model} in {len(gen_text_batches)} batches, loading models...")
return infer_batch((audio, sr), ref_text, gen_text_batches, model, remove_silence)
infer(ref_audio, ref_text, gen_text, model, remove_silence, ",".join(SPLIT_WORDS))