Spaces:
Sleeping
Sleeping
""" | |
ein notation: | |
b - batch | |
n - sequence | |
nt - text sequence | |
nw - raw wave length | |
d - dimension | |
""" | |
from __future__ import annotations | |
from typing import Optional | |
import math | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torchaudio | |
from x_transformers.x_transformers import apply_rotary_pos_emb | |
# raw wav to mel spec | |
class MelSpec(nn.Module): | |
def __init__( | |
self, | |
filter_length = 1024, | |
hop_length = 256, | |
win_length = 1024, | |
n_mel_channels = 100, | |
target_sample_rate = 24_000, | |
normalize = False, | |
power = 1, | |
norm = None, | |
center = True, | |
): | |
super().__init__() | |
self.n_mel_channels = n_mel_channels | |
self.mel_stft = torchaudio.transforms.MelSpectrogram( | |
sample_rate = target_sample_rate, | |
n_fft = filter_length, | |
win_length = win_length, | |
hop_length = hop_length, | |
n_mels = n_mel_channels, | |
power = power, | |
center = center, | |
normalized = normalize, | |
norm = norm, | |
) | |
self.register_buffer('dummy', torch.tensor(0), persistent = False) | |
def forward(self, inp): | |
if len(inp.shape) == 3: | |
inp = inp.squeeze(1) # 'b 1 nw -> b nw' | |
assert len(inp.shape) == 2 | |
if self.dummy.device != inp.device: | |
self.to(inp.device) | |
mel = self.mel_stft(inp) | |
mel = mel.clamp(min = 1e-5).log() | |
return mel | |
# sinusoidal position embedding | |
class SinusPositionEmbedding(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
def forward(self, x, scale=1000): | |
device = x.device | |
half_dim = self.dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) | |
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
# convolutional position embedding | |
class ConvPositionEmbedding(nn.Module): | |
def __init__(self, dim, kernel_size = 31, groups = 16): | |
super().__init__() | |
assert kernel_size % 2 != 0 | |
self.conv1d = nn.Sequential( | |
nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2), | |
nn.Mish(), | |
nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2), | |
nn.Mish(), | |
) | |
def forward(self, x: float['b n d'], mask: bool['b n'] | None = None): | |
if mask is not None: | |
mask = mask[..., None] | |
x = x.masked_fill(~mask, 0.) | |
x = x.permute(0, 2, 1) | |
x = self.conv1d(x) | |
out = x.permute(0, 2, 1) | |
if mask is not None: | |
out = out.masked_fill(~mask, 0.) | |
return out | |
# rotary positional embedding related | |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.): | |
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning | |
# has some connection to NTK literature | |
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ | |
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py | |
theta *= theta_rescale_factor ** (dim / (dim - 2)) | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
t = torch.arange(end, device=freqs.device) # type: ignore | |
freqs = torch.outer(t, freqs).float() # type: ignore | |
freqs_cos = torch.cos(freqs) # real part | |
freqs_sin = torch.sin(freqs) # imaginary part | |
return torch.cat([freqs_cos, freqs_sin], dim=-1) | |
def get_pos_embed_indices(start, length, max_pos, scale=1.): | |
# length = length if isinstance(length, int) else length.max() | |
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar | |
pos = start.unsqueeze(1) + ( | |
torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * | |
scale.unsqueeze(1)).long() | |
# avoid extra long error. | |
pos = torch.where(pos < max_pos, pos, max_pos - 1) | |
return pos | |
# Global Response Normalization layer (Instance Normalization ?) | |
class GRN(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.zeros(1, 1, dim)) | |
self.beta = nn.Parameter(torch.zeros(1, 1, dim)) | |
def forward(self, x): | |
Gx = torch.norm(x, p=2, dim=1, keepdim=True) | |
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) | |
return self.gamma * (x * Nx) + self.beta + x | |
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py | |
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108 | |
class ConvNeXtV2Block(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
intermediate_dim: int, | |
dilation: int = 1, | |
): | |
super().__init__() | |
padding = (dilation * (7 - 1)) // 2 | |
self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation) # depthwise conv | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.grn = GRN(intermediate_dim) | |
self.pwconv2 = nn.Linear(intermediate_dim, dim) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
residual = x | |
x = x.transpose(1, 2) # b n d -> b d n | |
x = self.dwconv(x) | |
x = x.transpose(1, 2) # b d n -> b n d | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.grn(x) | |
x = self.pwconv2(x) | |
return residual + x | |
# AdaLayerNormZero | |
# return with modulated x for attn input, and params for later mlp modulation | |
class AdaLayerNormZero(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(dim, dim * 6) | |
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
def forward(self, x, emb = None): | |
emb = self.linear(self.silu(emb)) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1) | |
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp | |
# AdaLayerNormZero for final layer | |
# return only with modulated x for attn input, cuz no more mlp modulation | |
class AdaLayerNormZero_Final(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(dim, dim * 2) | |
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
def forward(self, x, emb): | |
emb = self.linear(self.silu(emb)) | |
scale, shift = torch.chunk(emb, 2, dim=1) | |
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] | |
return x | |
# FeedForward | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out = None, mult = 4, dropout = 0., approximate: str = 'none'): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
activation = nn.GELU(approximate=approximate) | |
project_in = nn.Sequential( | |
nn.Linear(dim, inner_dim), | |
activation | |
) | |
self.ff = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.ff(x) | |
# Attention with possible joint part | |
# modified from diffusers/src/diffusers/models/attention_processor.py | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
processor: JointAttnProcessor | AttnProcessor, | |
dim: int, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
context_dim: Optional[int] = None, # if not None -> joint attention | |
context_pre_only = None, | |
): | |
super().__init__() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.processor = processor | |
self.dim = dim | |
self.heads = heads | |
self.inner_dim = dim_head * heads | |
self.dropout = dropout | |
self.context_dim = context_dim | |
self.context_pre_only = context_pre_only | |
self.to_q = nn.Linear(dim, self.inner_dim) | |
self.to_k = nn.Linear(dim, self.inner_dim) | |
self.to_v = nn.Linear(dim, self.inner_dim) | |
if self.context_dim is not None: | |
self.to_k_c = nn.Linear(context_dim, self.inner_dim) | |
self.to_v_c = nn.Linear(context_dim, self.inner_dim) | |
if self.context_pre_only is not None: | |
self.to_q_c = nn.Linear(context_dim, self.inner_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(self.inner_dim, dim)) | |
self.to_out.append(nn.Dropout(dropout)) | |
if self.context_pre_only is not None and not self.context_pre_only: | |
self.to_out_c = nn.Linear(self.inner_dim, dim) | |
def forward( | |
self, | |
x: float['b n d'], # noised input x | |
c: float['b n d'] = None, # context c | |
mask: bool['b n'] | None = None, | |
rope = None, # rotary position embedding for x | |
c_rope = None, # rotary position embedding for c | |
) -> torch.Tensor: | |
if c is not None: | |
return self.processor(self, x, c = c, mask = mask, rope = rope, c_rope = c_rope) | |
else: | |
return self.processor(self, x, mask = mask, rope = rope) | |
# Attention processor | |
class AttnProcessor: | |
def __init__(self): | |
pass | |
def __call__( | |
self, | |
attn: Attention, | |
x: float['b n d'], # noised input x | |
mask: bool['b n'] | None = None, | |
rope = None, # rotary position embedding | |
) -> torch.FloatTensor: | |
batch_size = x.shape[0] | |
# `sample` projections. | |
query = attn.to_q(x) | |
key = attn.to_k(x) | |
value = attn.to_v(x) | |
# apply rotary position embedding | |
if rope is not None: | |
freqs, xpos_scale = rope | |
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.) | |
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale) | |
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale) | |
# attention | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# mask. e.g. inference got a batch with different target durations, mask out the padding | |
if mask is not None: | |
attn_mask = mask | |
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n' | |
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2]) | |
else: | |
attn_mask = None | |
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False) | |
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
x = x.to(query.dtype) | |
# linear proj | |
x = attn.to_out[0](x) | |
# dropout | |
x = attn.to_out[1](x) | |
if mask is not None: | |
mask = mask.unsqueeze(-1) | |
x = x.masked_fill(~mask, 0.) | |
return x | |
# Joint Attention processor for MM-DiT | |
# modified from diffusers/src/diffusers/models/attention_processor.py | |
class JointAttnProcessor: | |
def __init__(self): | |
pass | |
def __call__( | |
self, | |
attn: Attention, | |
x: float['b n d'], # noised input x | |
c: float['b nt d'] = None, # context c, here text | |
mask: bool['b n'] | None = None, | |
rope = None, # rotary position embedding for x | |
c_rope = None, # rotary position embedding for c | |
) -> torch.FloatTensor: | |
residual = x | |
batch_size = c.shape[0] | |
# `sample` projections. | |
query = attn.to_q(x) | |
key = attn.to_k(x) | |
value = attn.to_v(x) | |
# `context` projections. | |
c_query = attn.to_q_c(c) | |
c_key = attn.to_k_c(c) | |
c_value = attn.to_v_c(c) | |
# apply rope for context and noised input independently | |
if rope is not None: | |
freqs, xpos_scale = rope | |
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.) | |
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale) | |
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale) | |
if c_rope is not None: | |
freqs, xpos_scale = c_rope | |
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if xpos_scale is not None else (1., 1.) | |
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale) | |
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale) | |
# attention | |
query = torch.cat([query, c_query], dim=1) | |
key = torch.cat([key, c_key], dim=1) | |
value = torch.cat([value, c_value], dim=1) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# mask. e.g. inference got a batch with different target durations, mask out the padding | |
if mask is not None: | |
attn_mask = F.pad(mask, (0, c.shape[1]), value = True) # no mask for c (text) | |
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n' | |
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2]) | |
else: | |
attn_mask = None | |
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False) | |
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
x = x.to(query.dtype) | |
# Split the attention outputs. | |
x, c = ( | |
x[:, :residual.shape[1]], | |
x[:, residual.shape[1]:], | |
) | |
# linear proj | |
x = attn.to_out[0](x) | |
# dropout | |
x = attn.to_out[1](x) | |
if not attn.context_pre_only: | |
c = attn.to_out_c(c) | |
if mask is not None: | |
mask = mask.unsqueeze(-1) | |
x = x.masked_fill(~mask, 0.) | |
# c = c.masked_fill(~mask, 0.) # no mask for c (text) | |
return x, c | |
# DiT Block | |
class DiTBlock(nn.Module): | |
def __init__(self, dim, heads, dim_head, ff_mult = 4, dropout = 0.1): | |
super().__init__() | |
self.attn_norm = AdaLayerNormZero(dim) | |
self.attn = Attention( | |
processor = AttnProcessor(), | |
dim = dim, | |
heads = heads, | |
dim_head = dim_head, | |
dropout = dropout, | |
) | |
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh") | |
def forward(self, x, t, mask = None, rope = None): # x: noised input, t: time embedding | |
# pre-norm & modulation for attention input | |
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t) | |
# attention | |
attn_output = self.attn(x=norm, mask=mask, rope=rope) | |
# process attention output for input x | |
x = x + gate_msa.unsqueeze(1) * attn_output | |
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
ff_output = self.ff(norm) | |
x = x + gate_mlp.unsqueeze(1) * ff_output | |
return x | |
# MMDiT Block https://arxiv.org/abs/2403.03206 | |
class MMDiTBlock(nn.Module): | |
r""" | |
modified from diffusers/src/diffusers/models/attention.py | |
notes. | |
_c: context related. text, cond, etc. (left part in sd3 fig2.b) | |
_x: noised input related. (right part) | |
context_pre_only: last layer only do prenorm + modulation cuz no more ffn | |
""" | |
def __init__(self, dim, heads, dim_head, ff_mult = 4, dropout = 0.1, context_pre_only = False): | |
super().__init__() | |
self.context_pre_only = context_pre_only | |
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim) | |
self.attn_norm_x = AdaLayerNormZero(dim) | |
self.attn = Attention( | |
processor = JointAttnProcessor(), | |
dim = dim, | |
heads = heads, | |
dim_head = dim_head, | |
dropout = dropout, | |
context_dim = dim, | |
context_pre_only = context_pre_only, | |
) | |
if not context_pre_only: | |
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_c = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh") | |
else: | |
self.ff_norm_c = None | |
self.ff_c = None | |
self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
self.ff_x = FeedForward(dim = dim, mult = ff_mult, dropout = dropout, approximate = "tanh") | |
def forward(self, x, c, t, mask = None, rope = None, c_rope = None): # x: noised input, c: context, t: time embedding | |
# pre-norm & modulation for attention input | |
if self.context_pre_only: | |
norm_c = self.attn_norm_c(c, t) | |
else: | |
norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t) | |
norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t) | |
# attention | |
x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope) | |
# process attention output for context c | |
if self.context_pre_only: | |
c = None | |
else: # if not last layer | |
c = c + c_gate_msa.unsqueeze(1) * c_attn_output | |
norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] | |
c_ff_output = self.ff_c(norm_c) | |
c = c + c_gate_mlp.unsqueeze(1) * c_ff_output | |
# process attention output for input x | |
x = x + x_gate_msa.unsqueeze(1) * x_attn_output | |
norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None] | |
x_ff_output = self.ff_x(norm_x) | |
x = x + x_gate_mlp.unsqueeze(1) * x_ff_output | |
return c, x | |
# time step conditioning embedding | |
class TimestepEmbedding(nn.Module): | |
def __init__(self, dim, freq_embed_dim=256): | |
super().__init__() | |
self.time_embed = SinusPositionEmbedding(freq_embed_dim) | |
self.time_mlp = nn.Sequential( | |
nn.Linear(freq_embed_dim, dim), | |
nn.SiLU(), | |
nn.Linear(dim, dim) | |
) | |
def forward(self, timestep: float['b']): | |
time_hidden = self.time_embed(timestep) | |
time_hidden = time_hidden.to(timestep.dtype) | |
time = self.time_mlp(time_hidden) # b d | |
return time | |