zero-shot-tts / inference-cli.py
mrfakename's picture
Sync from GitHub repo
8474faf verified
raw
history blame
14.6 kB
import argparse
import codecs
import re
import tempfile
from pathlib import Path
import numpy as np
import soundfile as sf
import tomli
import torch
import torchaudio
import tqdm
from cached_path import cached_path
from einops import rearrange
from pydub import AudioSegment, silence
from transformers import pipeline
from vocos import Vocos
from model import CFM, DiT, MMDiT, UNetT
from model.utils import (convert_char_to_pinyin, get_tokenizer,
load_checkpoint, save_spectrogram)
parser = argparse.ArgumentParser(
prog="python3 inference-cli.py",
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
epilog="Specify options above to override one or more settings from config.",
)
parser.add_argument(
"-c",
"--config",
help="Configuration file. Default=cli-config.toml",
default="inference-cli.toml",
)
parser.add_argument(
"-m",
"--model",
help="F5-TTS | E2-TTS",
)
parser.add_argument(
"-p",
"--ckpt_file",
help="The Checkpoint .pt",
)
parser.add_argument(
"-v",
"--vocab_file",
help="The vocab .txt",
)
parser.add_argument(
"-r",
"--ref_audio",
type=str,
help="Reference audio file < 15 seconds."
)
parser.add_argument(
"-s",
"--ref_text",
type=str,
default="666",
help="Subtitle for the reference audio."
)
parser.add_argument(
"-t",
"--gen_text",
type=str,
help="Text to generate.",
)
parser.add_argument(
"-f",
"--gen_file",
type=str,
help="File with text to generate. Ignores --text",
)
parser.add_argument(
"-o",
"--output_dir",
type=str,
help="Path to output folder..",
)
parser.add_argument(
"--remove_silence",
help="Remove silence.",
)
parser.add_argument(
"--load_vocoder_from_local",
action="store_true",
help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz",
)
args = parser.parse_args()
config = tomli.load(open(args.config, "rb"))
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
gen_text = args.gen_text if args.gen_text else config["gen_text"]
gen_file = args.gen_file if args.gen_file else config["gen_file"]
if gen_file:
gen_text = codecs.open(gen_file, "r", "utf-8").read()
output_dir = args.output_dir if args.output_dir else config["output_dir"]
model = args.model if args.model else config["model"]
ckpt_file = args.ckpt_file if args.ckpt_file else ""
vocab_file = args.vocab_file if args.vocab_file else ""
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
wave_path = Path(output_dir)/"out.wav"
spectrogram_path = Path(output_dir)/"out.png"
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
device = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
if args.load_vocoder_from_local:
print(f"Load vocos from local path {vocos_local_path}")
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
vocos.load_state_dict(state_dict)
vocos.eval()
else:
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
print(f"Using {device} device")
# --------------------- Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32 # 16, 32
cfg_strength = 2.0
ode_method = "euler"
sway_sampling_coef = -1.0
speed = 1.0
# fix_duration = 27 # None or float (duration in seconds)
fix_duration = None
def load_model(model_cls, model_cfg, ckpt_path,file_vocab):
if file_vocab=="":
file_vocab="Emilia_ZH_EN"
tokenizer="pinyin"
else:
tokenizer="custom"
print("\nvocab : ", vocab_file,tokenizer)
print("tokenizer : ", tokenizer)
print("model : ", ckpt_path,"\n")
vocab_char_map, vocab_size = get_tokenizer(file_vocab, tokenizer)
model = CFM(
transformer=model_cls(
**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
),
mel_spec_kwargs=dict(
target_sample_rate=target_sample_rate,
n_mel_channels=n_mel_channels,
hop_length=hop_length,
),
odeint_kwargs=dict(
method=ode_method,
),
vocab_char_map=vocab_char_map,
).to(device)
model = load_checkpoint(model, ckpt_path, device, use_ema = True)
return model
# load models
F5TTS_model_cfg = dict(
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
if model == "F5-TTS":
if ckpt_file == "":
repo_name= "F5-TTS"
exp_name = "F5TTS_Base"
ckpt_step= 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
ema_model = load_model(DiT, F5TTS_model_cfg, ckpt_file,vocab_file)
elif model == "E2-TTS":
if ckpt_file == "":
repo_name= "E2-TTS"
exp_name = "E2TTS_Base"
ckpt_step= 1200000
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
ema_model = load_model(UNetT, E2TTS_model_cfg, ckpt_file,vocab_file)
asr_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device=device,
)
def chunk_text(text, max_chars=135):
"""
Splits the input text into chunks, each with a maximum number of characters.
Args:
text (str): The text to be split.
max_chars (int): The maximum number of characters per chunk.
Returns:
List[str]: A list of text chunks.
"""
chunks = []
current_chunk = ""
# Split the text into sentences based on punctuation followed by whitespace
sentences = re.split(r'(?<=[;:,.!?])\s+|(?<=[;:,。!?])', text)
for sentence in sentences:
if len(current_chunk.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
current_chunk += sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
#ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors
#if not Path(ckpt_path).exists():
#ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
def infer_batch(ref_audio, ref_text, gen_text_batches, model, remove_silence, cross_fade_duration=0.15):
audio, sr = ref_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
generated_waves = []
spectrograms = []
if len(ref_text[-1].encode('utf-8')) == 1:
ref_text = ref_text + " "
for i, gen_text in enumerate(tqdm.tqdm(gen_text_batches)):
# Prepare the text
text_list = [ref_text + gen_text]
final_text_list = convert_char_to_pinyin(text_list)
# Calculate duration
ref_audio_len = audio.shape[-1] // hop_length
ref_text_len = len(ref_text.encode('utf-8'))
gen_text_len = len(gen_text.encode('utf-8'))
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
# inference
with torch.inference_mode():
generated, _ = ema_model.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
generated = generated.to(torch.float32)
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# wav -> numpy
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
spectrograms.append(generated_mel_spec[0].cpu().numpy())
# Combine all generated waves with cross-fading
if cross_fade_duration <= 0:
# Simply concatenate
final_wave = np.concatenate(generated_waves)
else:
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave
next_wave = generated_waves[i]
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
cross_fade_samples = int(cross_fade_duration * target_sample_rate)
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
if cross_fade_samples <= 0:
# No overlap possible, concatenate
final_wave = np.concatenate([prev_wave, next_wave])
continue
# Overlapping parts
prev_overlap = prev_wave[-cross_fade_samples:]
next_overlap = next_wave[:cross_fade_samples]
# Fade out and fade in
fade_out = np.linspace(1, 0, cross_fade_samples)
fade_in = np.linspace(0, 1, cross_fade_samples)
# Cross-faded overlap
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
# Combine
new_wave = np.concatenate([
prev_wave[:-cross_fade_samples],
cross_faded_overlap,
next_wave[cross_fade_samples:]
])
final_wave = new_wave
# Create a combined spectrogram
combined_spectrogram = np.concatenate(spectrograms, axis=1)
return final_wave, combined_spectrogram
def process_voice(ref_audio_orig, ref_text):
print("Converting", ref_audio_orig)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
audio_duration = len(aseg)
if audio_duration > 15000:
print("Audio is over 15s, clipping to only first 15s.")
aseg = aseg[:15000]
aseg.export(f.name, format="wav")
ref_audio = f.name
if not ref_text.strip():
print("No reference text provided, transcribing reference audio...")
ref_text = asr_pipe(
ref_audio,
chunk_length_s=30,
batch_size=128,
generate_kwargs={"task": "transcribe"},
return_timestamps=False,
)["text"].strip()
print("Finished transcription")
else:
print("Using custom reference text...")
return ref_audio, ref_text
def infer(ref_audio, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15):
# Add the functionality to ensure it ends with ". "
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
if ref_text.endswith("."):
ref_text += " "
else:
ref_text += ". "
# Split the input text into batches
audio, sr = torchaudio.load(ref_audio)
max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
for i, gen_text in enumerate(gen_text_batches):
print(f'gen_text {i}', gen_text)
print(f"Generating audio using {model} in {len(gen_text_batches)} batches, loading models...")
return infer_batch((audio, sr), ref_text, gen_text_batches, model, remove_silence, cross_fade_duration)
def process(ref_audio, ref_text, text_gen, model, remove_silence):
main_voice = {"ref_audio":ref_audio, "ref_text":ref_text}
if "voices" not in config:
voices = {"main": main_voice}
else:
voices = config["voices"]
voices["main"] = main_voice
for voice in voices:
voices[voice]['ref_audio'], voices[voice]['ref_text'] = process_voice(voices[voice]['ref_audio'], voices[voice]['ref_text'])
print("Voice:", voice)
print("Ref_audio:", voices[voice]['ref_audio'])
print("Ref_text:", voices[voice]['ref_text'])
generated_audio_segments = []
reg1 = r'(?=\[\w+\])'
chunks = re.split(reg1, text_gen)
reg2 = r'\[(\w+)\]'
for text in chunks:
match = re.match(reg2, text)
if not match or voice not in voices:
voice = "main"
else:
voice = match[1]
text = re.sub(reg2, "", text)
gen_text = text.strip()
ref_audio = voices[voice]['ref_audio']
ref_text = voices[voice]['ref_text']
print(f"Voice: {voice}")
audio, spectragram = infer(ref_audio, ref_text, gen_text, model,remove_silence)
generated_audio_segments.append(audio)
if generated_audio_segments:
final_wave = np.concatenate(generated_audio_segments)
with open(wave_path, "wb") as f:
sf.write(f.name, final_wave, target_sample_rate)
# Remove silence
if remove_silence:
aseg = AudioSegment.from_file(f.name)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
aseg.export(f.name, format="wav")
print(f.name)
process(ref_audio, ref_text, gen_text, model, remove_silence)