Spaces:
Sleeping
Sleeping
import os | |
import sys | |
sys.path.append(os.getcwd()) | |
import argparse | |
import csv | |
import json | |
import shutil | |
from importlib.resources import files | |
from pathlib import Path | |
import torchaudio | |
from tqdm import tqdm | |
from datasets.arrow_writer import ArrowWriter | |
from f5_tts.model.utils import ( | |
convert_char_to_pinyin, | |
) | |
PRETRAINED_VOCAB_PATH = files("f5_tts").joinpath("../../data/Emilia_ZH_EN_pinyin/vocab.txt") | |
def is_csv_wavs_format(input_dataset_dir): | |
fpath = Path(input_dataset_dir) | |
metadata = fpath / "metadata.csv" | |
wavs = fpath / "wavs" | |
return metadata.exists() and metadata.is_file() and wavs.exists() and wavs.is_dir() | |
def prepare_csv_wavs_dir(input_dir): | |
assert is_csv_wavs_format(input_dir), f"not csv_wavs format: {input_dir}" | |
input_dir = Path(input_dir) | |
metadata_path = input_dir / "metadata.csv" | |
audio_path_text_pairs = read_audio_text_pairs(metadata_path.as_posix()) | |
sub_result, durations = [], [] | |
vocab_set = set() | |
polyphone = True | |
for audio_path, text in audio_path_text_pairs: | |
if not Path(audio_path).exists(): | |
print(f"audio {audio_path} not found, skipping") | |
continue | |
audio_duration = get_audio_duration(audio_path) | |
# assume tokenizer = "pinyin" ("pinyin" | "char") | |
text = convert_char_to_pinyin([text], polyphone=polyphone)[0] | |
sub_result.append({"audio_path": audio_path, "text": text, "duration": audio_duration}) | |
durations.append(audio_duration) | |
vocab_set.update(list(text)) | |
return sub_result, durations, vocab_set | |
def get_audio_duration(audio_path): | |
audio, sample_rate = torchaudio.load(audio_path) | |
num_channels = audio.shape[0] | |
return audio.shape[1] / (sample_rate * num_channels) | |
def read_audio_text_pairs(csv_file_path): | |
audio_text_pairs = [] | |
parent = Path(csv_file_path).parent | |
with open(csv_file_path, mode="r", newline="", encoding="utf-8-sig") as csvfile: | |
reader = csv.reader(csvfile, delimiter="|") | |
next(reader) # Skip the header row | |
for row in reader: | |
if len(row) >= 2: | |
audio_file = row[0].strip() # First column: audio file path | |
text = row[1].strip() # Second column: text | |
audio_file_path = parent / audio_file | |
audio_text_pairs.append((audio_file_path.as_posix(), text)) | |
return audio_text_pairs | |
def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_finetune): | |
out_dir = Path(out_dir) | |
# save preprocessed dataset to disk | |
out_dir.mkdir(exist_ok=True, parents=True) | |
print(f"\nSaving to {out_dir} ...") | |
# dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list}) # oom | |
# dataset.save_to_disk(f"{out_dir}/raw", max_shard_size="2GB") | |
raw_arrow_path = out_dir / "raw.arrow" | |
with ArrowWriter(path=raw_arrow_path.as_posix(), writer_batch_size=1) as writer: | |
for line in tqdm(result, desc="Writing to raw.arrow ..."): | |
writer.write(line) | |
# dup a json separately saving duration in case for DynamicBatchSampler ease | |
dur_json_path = out_dir / "duration.json" | |
with open(dur_json_path.as_posix(), "w", encoding="utf-8") as f: | |
json.dump({"duration": duration_list}, f, ensure_ascii=False) | |
# vocab map, i.e. tokenizer | |
# add alphabets and symbols (optional, if plan to ft on de/fr etc.) | |
# if tokenizer == "pinyin": | |
# text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)]) | |
voca_out_path = out_dir / "vocab.txt" | |
with open(voca_out_path.as_posix(), "w") as f: | |
for vocab in sorted(text_vocab_set): | |
f.write(vocab + "\n") | |
if is_finetune: | |
file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix() | |
shutil.copy2(file_vocab_finetune, voca_out_path) | |
else: | |
with open(voca_out_path, "w") as f: | |
for vocab in sorted(text_vocab_set): | |
f.write(vocab + "\n") | |
dataset_name = out_dir.stem | |
print(f"\nFor {dataset_name}, sample count: {len(result)}") | |
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") | |
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours") | |
def prepare_and_save_set(inp_dir, out_dir, is_finetune: bool = True): | |
if is_finetune: | |
assert PRETRAINED_VOCAB_PATH.exists(), f"pretrained vocab.txt not found: {PRETRAINED_VOCAB_PATH}" | |
sub_result, durations, vocab_set = prepare_csv_wavs_dir(inp_dir) | |
save_prepped_dataset(out_dir, sub_result, durations, vocab_set, is_finetune) | |
def cli(): | |
# finetune: python scripts/prepare_csv_wavs.py /path/to/input_dir /path/to/output_dir_pinyin | |
# pretrain: python scripts/prepare_csv_wavs.py /path/to/output_dir_pinyin --pretrain | |
parser = argparse.ArgumentParser(description="Prepare and save dataset.") | |
parser.add_argument("inp_dir", type=str, help="Input directory containing the data.") | |
parser.add_argument("out_dir", type=str, help="Output directory to save the prepared data.") | |
parser.add_argument("--pretrain", action="store_true", help="Enable for new pretrain, otherwise is a fine-tune") | |
args = parser.parse_args() | |
prepare_and_save_set(args.inp_dir, args.out_dir, is_finetune=not args.pretrain) | |
if __name__ == "__main__": | |
cli() | |