Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2-medium")
|
7 |
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2-medium")
|
8 |
|
9 |
system_prompt = """
|
@@ -23,8 +23,10 @@ output: Potential widening of the achievement gap if data is not used equitably.
|
|
23 |
def generate(text):
|
24 |
try:
|
25 |
prompt = system_prompt + f"\ninput: {text}\noutput:"
|
26 |
-
inputs = tokenizer
|
27 |
-
|
|
|
|
|
28 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True).split("output:")[-1].strip()
|
29 |
return response_text if response_text else "No valid response generated."
|
30 |
|
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2-medium", clean_up_tokenization_spaces=True)
|
7 |
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2-medium")
|
8 |
|
9 |
system_prompt = """
|
|
|
23 |
def generate(text):
|
24 |
try:
|
25 |
prompt = system_prompt + f"\ninput: {text}\noutput:"
|
26 |
+
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=True)
|
27 |
+
input_ids = inputs["input_ids"].unsqueeze(0)
|
28 |
+
attention_mask = inputs["attention_mask"].unsqueeze(0)
|
29 |
+
outputs = model.generate(input_ids, attention_mask=attention_mask, max_length=256)
|
30 |
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True).split("output:")[-1].strip()
|
31 |
return response_text if response_text else "No valid response generated."
|
32 |
|