import os import gradio as gr from transformers import pipeline from huggingface_hub import login # Get the Hugging Face token from environment variables HF_TOKEN = os.getenv('HF') if not HF_TOKEN: raise ValueError("The HF environment variable is not set. Please set it to your Hugging Face token.") # Authenticate with Hugging Face and save the token to the Git credentials helper login(HF_TOKEN, add_to_git_credential=True) # Create the pipeline for text generation using the specified model pipe = pipeline("text-generation", model="distilbert/distilgpt2", token=HF_TOKEN) def generate(text): try: # Generate the response using the pipeline responses = pipe(text, max_length=1024, num_return_sequences=1) response_text = responses[0]['generated_text'] return response_text if response_text else "No valid response generated." except Exception as e: return str(e) iface = gr.Interface( fn=generate, inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), outputs="text", title="Chuunibyou Text Generator", description="Transform text into an elaborate and formal style with a nobleman tone.", live=False ) def launch_custom_interface(): iface.launch() with gr.TabbedInterface(fn=generate, inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), outputs=gr.HTML(label="Output")) as ti: ti.add(custom_html) if __name__ == "__main__": launch_custom_interface()