Spaces:
Sleeping
Sleeping
Update src/app.py
Browse files- src/app.py +27 -17
src/app.py
CHANGED
@@ -2,14 +2,17 @@ import streamlit as st
|
|
2 |
from docx import Document
|
3 |
from PyPDF2 import PdfReader
|
4 |
from io import BytesIO
|
5 |
-
|
6 |
-
|
7 |
-
import
|
|
|
8 |
|
9 |
-
# Load
|
10 |
@st.cache_resource
|
11 |
-
def
|
12 |
-
|
|
|
|
|
13 |
|
14 |
def convert_docx_to_text(docx_file):
|
15 |
doc = Document(docx_file)
|
@@ -19,23 +22,26 @@ def convert_pdf_to_text(pdf_file):
|
|
19 |
reader = PdfReader(pdf_file)
|
20 |
return "\n".join([page.extract_text() or '' for page in reader.pages])
|
21 |
|
22 |
-
def text_to_speech(text):
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
buffer = BytesIO()
|
26 |
-
write(buffer, 22050,
|
27 |
buffer.seek(0)
|
28 |
return buffer
|
29 |
|
30 |
-
def get_download_link(
|
31 |
-
b64 = st.base64.b64encode(
|
32 |
href = f'<a href="data:audio/wav;base64,{b64}" download="{filename}">Download {filename}</a>'
|
33 |
return href
|
34 |
|
35 |
def main():
|
36 |
-
st.title("Text to Speech
|
37 |
|
38 |
-
uploaded_file = st.file_uploader("Upload a
|
39 |
|
40 |
if uploaded_file:
|
41 |
ext = uploaded_file.name.split('.')[-1].lower()
|
@@ -47,15 +53,19 @@ def main():
|
|
47 |
elif ext == 'pdf':
|
48 |
text = convert_pdf_to_text(uploaded_file)
|
49 |
else:
|
50 |
-
st.error("Unsupported file
|
51 |
return
|
52 |
|
53 |
if not text.strip():
|
54 |
st.warning("No readable text found.")
|
55 |
return
|
56 |
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
59 |
|
60 |
st.audio(audio_buffer, format="audio/wav")
|
61 |
st.markdown(get_download_link(audio_buffer), unsafe_allow_html=True)
|
|
|
2 |
from docx import Document
|
3 |
from PyPDF2 import PdfReader
|
4 |
from io import BytesIO
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
+
import soundfile as sf
|
8 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
9 |
|
10 |
+
# Load TTS model and processor
|
11 |
@st.cache_resource
|
12 |
+
def load_model():
|
13 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained("espnet/kan-bayashi_ljspeech_vits")
|
14 |
+
processor = AutoProcessor.from_pretrained("espnet/kan-bayashi_ljspeech_vits")
|
15 |
+
return model, processor
|
16 |
|
17 |
def convert_docx_to_text(docx_file):
|
18 |
doc = Document(docx_file)
|
|
|
22 |
reader = PdfReader(pdf_file)
|
23 |
return "\n".join([page.extract_text() or '' for page in reader.pages])
|
24 |
|
25 |
+
def text_to_speech(text, model, processor):
|
26 |
+
inputs = processor(text, return_tensors="pt")
|
27 |
+
with torch.no_grad():
|
28 |
+
speech = model.generate(**inputs)
|
29 |
+
|
30 |
+
waveform = speech.squeeze().cpu().numpy()
|
31 |
buffer = BytesIO()
|
32 |
+
sf.write(buffer, waveform, 22050, format="WAV")
|
33 |
buffer.seek(0)
|
34 |
return buffer
|
35 |
|
36 |
+
def get_download_link(audio_buffer, filename="output.wav"):
|
37 |
+
b64 = st.base64.b64encode(audio_buffer.getvalue()).decode()
|
38 |
href = f'<a href="data:audio/wav;base64,{b64}" download="{filename}">Download {filename}</a>'
|
39 |
return href
|
40 |
|
41 |
def main():
|
42 |
+
st.title("Text to Speech with Transformers (Offline Hugging Face)")
|
43 |
|
44 |
+
uploaded_file = st.file_uploader("Upload a TXT, DOCX, or PDF file", type=["txt", "docx", "pdf"])
|
45 |
|
46 |
if uploaded_file:
|
47 |
ext = uploaded_file.name.split('.')[-1].lower()
|
|
|
53 |
elif ext == 'pdf':
|
54 |
text = convert_pdf_to_text(uploaded_file)
|
55 |
else:
|
56 |
+
st.error("Unsupported file type")
|
57 |
return
|
58 |
|
59 |
if not text.strip():
|
60 |
st.warning("No readable text found.")
|
61 |
return
|
62 |
|
63 |
+
st.subheader("Extracted Text:")
|
64 |
+
st.write(text[:1000] + ("..." if len(text) > 1000 else ""))
|
65 |
+
|
66 |
+
with st.spinner("Generating audio..."):
|
67 |
+
model, processor = load_model()
|
68 |
+
audio_buffer = text_to_speech(text, model, processor)
|
69 |
|
70 |
st.audio(audio_buffer, format="audio/wav")
|
71 |
st.markdown(get_download_link(audio_buffer), unsafe_allow_html=True)
|