Spaces:
Sleeping
Sleeping
Commit
·
1710631
1
Parent(s):
1a8f82f
updated app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import time
|
|
6 |
|
7 |
# Configuration
|
8 |
BASE_MODEL = "microsoft/phi-2"
|
9 |
-
ADAPTER_MODEL = "pradeep6kumar2024/phi2-qlora-assistant"
|
10 |
|
11 |
class ModelWrapper:
|
12 |
def __init__(self):
|
@@ -16,48 +16,76 @@ class ModelWrapper:
|
|
16 |
|
17 |
def load_model(self):
|
18 |
if not self.loaded:
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
def generate_response(self, prompt, max_length=512, temperature=0.7, top_p=0.9
|
34 |
if not self.loaded:
|
35 |
self.load_model()
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# Initialize model wrapper
|
63 |
model_wrapper = ModelWrapper()
|
@@ -65,6 +93,9 @@ model_wrapper = ModelWrapper()
|
|
65 |
def generate_text(prompt, max_length=512, temperature=0.7, top_p=0.9):
|
66 |
"""Gradio interface function"""
|
67 |
try:
|
|
|
|
|
|
|
68 |
response, gen_time = model_wrapper.generate_response(
|
69 |
prompt,
|
70 |
max_length=max_length,
|
@@ -73,7 +104,8 @@ def generate_text(prompt, max_length=512, temperature=0.7, top_p=0.9):
|
|
73 |
)
|
74 |
return f"Generated in {gen_time:.2f} seconds:\n\n{response}"
|
75 |
except Exception as e:
|
76 |
-
|
|
|
77 |
|
78 |
# Create the Gradio interface
|
79 |
demo = gr.Interface(
|
@@ -159,6 +191,5 @@ demo = gr.Interface(
|
|
159 |
cache_examples=False
|
160 |
)
|
161 |
|
162 |
-
# Launch with sharing enabled
|
163 |
if __name__ == "__main__":
|
164 |
demo.launch()
|
|
|
6 |
|
7 |
# Configuration
|
8 |
BASE_MODEL = "microsoft/phi-2"
|
9 |
+
ADAPTER_MODEL = "pradeep6kumar2024/phi2-qlora-assistant"
|
10 |
|
11 |
class ModelWrapper:
|
12 |
def __init__(self):
|
|
|
16 |
|
17 |
def load_model(self):
|
18 |
if not self.loaded:
|
19 |
+
try:
|
20 |
+
print("Loading tokenizer...")
|
21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
22 |
+
BASE_MODEL,
|
23 |
+
trust_remote_code=True,
|
24 |
+
padding_side="left"
|
25 |
+
)
|
26 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
27 |
+
|
28 |
+
print("Loading base model...")
|
29 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
BASE_MODEL,
|
31 |
+
torch_dtype=torch.float16,
|
32 |
+
device_map="auto",
|
33 |
+
trust_remote_code=True,
|
34 |
+
use_flash_attention_2=False # Disable flash attention if causing issues
|
35 |
+
)
|
36 |
+
|
37 |
+
print("Loading LoRA adapter...")
|
38 |
+
self.model = PeftModel.from_pretrained(
|
39 |
+
base_model,
|
40 |
+
ADAPTER_MODEL,
|
41 |
+
torch_dtype=torch.float16,
|
42 |
+
device_map="auto"
|
43 |
+
)
|
44 |
+
self.model.eval()
|
45 |
+
print("Model loading complete!")
|
46 |
+
self.loaded = True
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Error during model loading: {str(e)}")
|
49 |
+
raise
|
50 |
|
51 |
+
def generate_response(self, prompt, max_length=512, temperature=0.7, top_p=0.9):
|
52 |
if not self.loaded:
|
53 |
self.load_model()
|
54 |
|
55 |
+
try:
|
56 |
+
# Tokenize input
|
57 |
+
inputs = self.tokenizer(
|
58 |
+
prompt,
|
59 |
+
return_tensors="pt",
|
60 |
+
truncation=True,
|
61 |
+
max_length=512,
|
62 |
+
padding=True
|
63 |
+
).to(self.model.device)
|
64 |
+
|
65 |
+
# Generate
|
66 |
+
start_time = time.time()
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = self.model.generate(
|
69 |
+
**inputs,
|
70 |
+
max_length=max_length,
|
71 |
+
temperature=temperature,
|
72 |
+
top_p=top_p,
|
73 |
+
do_sample=True,
|
74 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
75 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
76 |
+
repetition_penalty=1.1
|
77 |
+
)
|
78 |
+
|
79 |
+
# Decode response
|
80 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
+
if response.startswith(prompt):
|
82 |
+
response = response[len(prompt):].strip()
|
83 |
+
|
84 |
+
generation_time = time.time() - start_time
|
85 |
+
return response, generation_time
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error during generation: {str(e)}")
|
88 |
+
raise
|
89 |
|
90 |
# Initialize model wrapper
|
91 |
model_wrapper = ModelWrapper()
|
|
|
93 |
def generate_text(prompt, max_length=512, temperature=0.7, top_p=0.9):
|
94 |
"""Gradio interface function"""
|
95 |
try:
|
96 |
+
if not prompt.strip():
|
97 |
+
return "Please enter a prompt."
|
98 |
+
|
99 |
response, gen_time = model_wrapper.generate_response(
|
100 |
prompt,
|
101 |
max_length=max_length,
|
|
|
104 |
)
|
105 |
return f"Generated in {gen_time:.2f} seconds:\n\n{response}"
|
106 |
except Exception as e:
|
107 |
+
print(f"Error in generate_text: {str(e)}")
|
108 |
+
return f"Error generating response: {str(e)}\nPlease try again with a different prompt or parameters."
|
109 |
|
110 |
# Create the Gradio interface
|
111 |
demo = gr.Interface(
|
|
|
191 |
cache_examples=False
|
192 |
)
|
193 |
|
|
|
194 |
if __name__ == "__main__":
|
195 |
demo.launch()
|