Spaces:
Sleeping
Sleeping
Commit
·
3bf5e4f
1
Parent(s):
537ecfd
updated app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ import torch
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
5 |
import time
|
|
|
|
|
6 |
|
7 |
# Configuration
|
8 |
BASE_MODEL = "microsoft/phi-2"
|
@@ -17,6 +19,13 @@ class ModelWrapper:
|
|
17 |
def load_model(self):
|
18 |
if not self.loaded:
|
19 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
print("Loading tokenizer...")
|
21 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
22 |
BASE_MODEL,
|
@@ -28,19 +37,25 @@ class ModelWrapper:
|
|
28 |
print("Loading base model...")
|
29 |
base_model = AutoModelForCausalLM.from_pretrained(
|
30 |
BASE_MODEL,
|
31 |
-
torch_dtype=torch.
|
32 |
-
device_map="
|
33 |
trust_remote_code=True,
|
34 |
-
use_flash_attention_2=False
|
|
|
35 |
)
|
36 |
|
37 |
print("Loading LoRA adapter...")
|
38 |
self.model = PeftModel.from_pretrained(
|
39 |
base_model,
|
40 |
ADAPTER_MODEL,
|
41 |
-
torch_dtype=torch.
|
42 |
-
device_map="
|
43 |
)
|
|
|
|
|
|
|
|
|
|
|
44 |
self.model.eval()
|
45 |
print("Model loading complete!")
|
46 |
self.loaded = True
|
@@ -61,9 +76,10 @@ Include:
|
|
61 |
- Function implementation with comments
|
62 |
- Example usage
|
63 |
- Output demonstration
|
64 |
-
|
|
|
65 |
elif any(word in prompt.lower() for word in ["explain", "what is", "how does", "describe"]):
|
66 |
-
enhanced_prompt = f"""Below is a request for explanation.
|
67 |
|
68 |
{prompt}
|
69 |
|
@@ -72,13 +88,13 @@ Your response should include:
|
|
72 |
2. Practical examples and applications
|
73 |
3. Important concepts to understand
|
74 |
|
75 |
-
|
76 |
else:
|
77 |
-
enhanced_prompt = f"""Below is a request.
|
78 |
|
79 |
{prompt}
|
80 |
|
81 |
-
|
82 |
|
83 |
print(f"Enhanced prompt: {enhanced_prompt}") # Debug logging
|
84 |
|
@@ -89,26 +105,26 @@ Response:"""
|
|
89 |
truncation=True,
|
90 |
max_length=512,
|
91 |
padding=True
|
92 |
-
).to(
|
93 |
|
94 |
-
# Generate
|
95 |
start_time = time.time()
|
96 |
with torch.no_grad():
|
97 |
outputs = self.model.generate(
|
98 |
**inputs,
|
99 |
-
max_length=max_length,
|
100 |
-
min_length=50,
|
101 |
-
temperature=
|
102 |
-
top_p=min(0.
|
103 |
do_sample=True,
|
104 |
pad_token_id=self.tokenizer.pad_token_id,
|
105 |
eos_token_id=self.tokenizer.eos_token_id,
|
106 |
-
repetition_penalty=1.
|
107 |
-
no_repeat_ngram_size=
|
108 |
num_return_sequences=1,
|
109 |
early_stopping=True,
|
110 |
-
num_beams=
|
111 |
-
length_penalty=0.
|
112 |
)
|
113 |
|
114 |
# Decode response
|
@@ -121,7 +137,7 @@ Response:"""
|
|
121 |
|
122 |
print(f"After prompt removal: {response}") # Debug logging
|
123 |
|
124 |
-
# Remove common closure patterns
|
125 |
closures = [
|
126 |
"Best regards,",
|
127 |
"Sincerely,",
|
@@ -134,21 +150,52 @@ Response:"""
|
|
134 |
"[Student]",
|
135 |
"Let me know if you need any clarification",
|
136 |
"I hope this helps",
|
137 |
-
"Feel free to ask"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
]
|
139 |
|
|
|
140 |
for closure in closures:
|
141 |
if response.lower().endswith(closure.lower()):
|
142 |
response = response[:-(len(closure))].strip()
|
143 |
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
# Ensure code examples are properly formatted
|
147 |
if "```python" not in response and "def " in response:
|
148 |
response = "```python\n" + response + "\n```"
|
149 |
|
150 |
-
# More lenient validation
|
151 |
-
if len(response.strip()) < 20 or
|
|
|
|
|
|
|
|
|
152 |
print("Response validation failed - using fallback") # Debug logging
|
153 |
|
154 |
if "machine learning" in prompt.lower():
|
@@ -194,7 +241,7 @@ result = add_numbers(num1, num2)
|
|
194 |
print(f"The sum of {num1} and {num2} is: {result}") # Output: The sum of 5 and 3 is: 8
|
195 |
```"""
|
196 |
else:
|
197 |
-
fallback_response = "I apologize, but I couldn't generate a complete response. Please try
|
198 |
|
199 |
response = fallback_response
|
200 |
|
@@ -207,7 +254,7 @@ print(f"The sum of {num1} and {num2} is: {result}") # Output: The sum of 5 and
|
|
207 |
# Initialize model wrapper
|
208 |
model_wrapper = ModelWrapper()
|
209 |
|
210 |
-
def generate_text(prompt, max_length=
|
211 |
"""Gradio interface function"""
|
212 |
try:
|
213 |
if not prompt.strip():
|
@@ -224,7 +271,7 @@ def generate_text(prompt, max_length=512, temperature=0.7, top_p=0.9):
|
|
224 |
print(f"Error in generate_text: {str(e)}")
|
225 |
return f"Error generating response: {str(e)}\nPlease try again with a different prompt or parameters."
|
226 |
|
227 |
-
# Create the Gradio interface
|
228 |
demo = gr.Interface(
|
229 |
fn=generate_text,
|
230 |
inputs=[
|
@@ -235,8 +282,8 @@ demo = gr.Interface(
|
|
235 |
),
|
236 |
gr.Slider(
|
237 |
minimum=64,
|
238 |
-
maximum=
|
239 |
-
value=
|
240 |
step=64,
|
241 |
label="Maximum Length",
|
242 |
info="Longer values = longer responses but slower generation"
|
@@ -244,7 +291,7 @@ demo = gr.Interface(
|
|
244 |
gr.Slider(
|
245 |
minimum=0.1,
|
246 |
maximum=1.0,
|
247 |
-
value=0.
|
248 |
step=0.1,
|
249 |
label="Temperature",
|
250 |
info="Higher values = more creative, lower values = more focused"
|
@@ -252,14 +299,14 @@ demo = gr.Interface(
|
|
252 |
gr.Slider(
|
253 |
minimum=0.1,
|
254 |
maximum=1.0,
|
255 |
-
value=0.
|
256 |
step=0.1,
|
257 |
label="Top P",
|
258 |
info="Controls diversity of word choices"
|
259 |
),
|
260 |
],
|
261 |
outputs=gr.Textbox(label="Generated Response", lines=8),
|
262 |
-
title="Phi-2 QLoRA Fine-tuned Assistant",
|
263 |
description="""This is a fine-tuned version of Microsoft's Phi-2 model using QLoRA.
|
264 |
The model has been trained to provide helpful responses for various tasks including coding, writing, and general assistance.
|
265 |
|
@@ -270,39 +317,39 @@ demo = gr.Interface(
|
|
270 |
|
271 |
Tips:
|
272 |
- For code generation, use lower temperature (0.3-0.5)
|
273 |
-
- For creative writing, use higher temperature (0.
|
274 |
-
-
|
275 |
""",
|
276 |
examples=[
|
277 |
[
|
278 |
"Write a Python function to calculate the factorial of a number and provide additional recursive function examples",
|
279 |
-
|
280 |
0.5,
|
281 |
-
0.
|
282 |
],
|
283 |
[
|
284 |
"Explain what machine learning is in simple terms and provide some real-world applications",
|
285 |
-
|
286 |
-
0.
|
287 |
-
0.
|
288 |
],
|
289 |
[
|
290 |
"Write a professional email to schedule a team meeting for next week to discuss project progress",
|
291 |
-
|
292 |
-
0.
|
293 |
-
0.
|
294 |
],
|
295 |
[
|
296 |
"Write a Python function to implement binary search algorithm with detailed comments",
|
297 |
-
|
298 |
0.5,
|
299 |
-
0.
|
300 |
],
|
301 |
[
|
302 |
"Explain the concept of object-oriented programming using a real-world analogy",
|
303 |
-
|
304 |
-
0.
|
305 |
-
0.
|
306 |
]
|
307 |
],
|
308 |
cache_examples=False
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
5 |
import time
|
6 |
+
import gc
|
7 |
+
import os
|
8 |
|
9 |
# Configuration
|
10 |
BASE_MODEL = "microsoft/phi-2"
|
|
|
19 |
def load_model(self):
|
20 |
if not self.loaded:
|
21 |
try:
|
22 |
+
# Force CPU usage
|
23 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
24 |
+
device = torch.device("cpu")
|
25 |
+
|
26 |
+
# Clear memory
|
27 |
+
gc.collect()
|
28 |
+
|
29 |
print("Loading tokenizer...")
|
30 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
31 |
BASE_MODEL,
|
|
|
37 |
print("Loading base model...")
|
38 |
base_model = AutoModelForCausalLM.from_pretrained(
|
39 |
BASE_MODEL,
|
40 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
41 |
+
device_map="cpu",
|
42 |
trust_remote_code=True,
|
43 |
+
use_flash_attention_2=False,
|
44 |
+
low_cpu_mem_usage=True
|
45 |
)
|
46 |
|
47 |
print("Loading LoRA adapter...")
|
48 |
self.model = PeftModel.from_pretrained(
|
49 |
base_model,
|
50 |
ADAPTER_MODEL,
|
51 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
52 |
+
device_map="cpu"
|
53 |
)
|
54 |
+
|
55 |
+
# Free up memory
|
56 |
+
del base_model
|
57 |
+
gc.collect()
|
58 |
+
|
59 |
self.model.eval()
|
60 |
print("Model loading complete!")
|
61 |
self.loaded = True
|
|
|
76 |
- Function implementation with comments
|
77 |
- Example usage
|
78 |
- Output demonstration
|
79 |
+
|
80 |
+
Provide only the implementation, no conversation."""
|
81 |
elif any(word in prompt.lower() for word in ["explain", "what is", "how does", "describe"]):
|
82 |
+
enhanced_prompt = f"""Below is a request for explanation. Provide a complete, focused response without any conversation:
|
83 |
|
84 |
{prompt}
|
85 |
|
|
|
88 |
2. Practical examples and applications
|
89 |
3. Important concepts to understand
|
90 |
|
91 |
+
End your response when the explanation is complete. Do not ask questions or engage in conversation."""
|
92 |
else:
|
93 |
+
enhanced_prompt = f"""Below is a request. Provide a complete, focused response without any conversation:
|
94 |
|
95 |
{prompt}
|
96 |
|
97 |
+
End your response when complete. Do not ask questions or engage in conversation."""
|
98 |
|
99 |
print(f"Enhanced prompt: {enhanced_prompt}") # Debug logging
|
100 |
|
|
|
105 |
truncation=True,
|
106 |
max_length=512,
|
107 |
padding=True
|
108 |
+
).to("cpu") # Ensure CPU usage
|
109 |
|
110 |
+
# Generate with more conservative parameters for CPU
|
111 |
start_time = time.time()
|
112 |
with torch.no_grad():
|
113 |
outputs = self.model.generate(
|
114 |
**inputs,
|
115 |
+
max_length=min(max_length, 384), # Limit max length for CPU
|
116 |
+
min_length=50,
|
117 |
+
temperature=min(0.5, temperature),
|
118 |
+
top_p=min(0.85, top_p),
|
119 |
do_sample=True,
|
120 |
pad_token_id=self.tokenizer.pad_token_id,
|
121 |
eos_token_id=self.tokenizer.eos_token_id,
|
122 |
+
repetition_penalty=1.3,
|
123 |
+
no_repeat_ngram_size=4,
|
124 |
num_return_sequences=1,
|
125 |
early_stopping=True,
|
126 |
+
num_beams=2, # Reduced beam search for CPU
|
127 |
+
length_penalty=0.6
|
128 |
)
|
129 |
|
130 |
# Decode response
|
|
|
137 |
|
138 |
print(f"After prompt removal: {response}") # Debug logging
|
139 |
|
140 |
+
# Remove common closure patterns and conversation starters
|
141 |
closures = [
|
142 |
"Best regards,",
|
143 |
"Sincerely,",
|
|
|
150 |
"[Student]",
|
151 |
"Let me know if you need any clarification",
|
152 |
"I hope this helps",
|
153 |
+
"Feel free to ask",
|
154 |
+
"Can you provide",
|
155 |
+
"Would you like",
|
156 |
+
"Do you want",
|
157 |
+
"Let me know",
|
158 |
+
"Please let me know",
|
159 |
+
"Is there anything else",
|
160 |
+
"Do you have any questions",
|
161 |
+
"Sure!",
|
162 |
+
"Here are some examples:"
|
163 |
]
|
164 |
|
165 |
+
# First remove conversation starters from the end
|
166 |
for closure in closures:
|
167 |
if response.lower().endswith(closure.lower()):
|
168 |
response = response[:-(len(closure))].strip()
|
169 |
|
170 |
+
# Then remove any remaining conversation patterns
|
171 |
+
conversation_patterns = [
|
172 |
+
r"\?\s*$", # Questions at the end
|
173 |
+
r"Sure!.*$", # Responses starting with Sure!
|
174 |
+
r"Here are.*examples:?\s*$", # Incomplete example lists
|
175 |
+
r"Can you.*\?\s*$", # Questions starting with Can you
|
176 |
+
r"Would you.*\?\s*$", # Questions starting with Would you
|
177 |
+
r"Do you.*\?\s*$", # Questions starting with Do you
|
178 |
+
r"Let me know.*$", # Let me know phrases
|
179 |
+
r"I hope.*$", # I hope phrases
|
180 |
+
r"Feel free.*$" # Feel free phrases
|
181 |
+
]
|
182 |
+
|
183 |
+
import re
|
184 |
+
for pattern in conversation_patterns:
|
185 |
+
response = re.sub(pattern, "", response).strip()
|
186 |
+
|
187 |
+
print(f"After conversation removal: {response}") # Debug logging
|
188 |
|
189 |
# Ensure code examples are properly formatted
|
190 |
if "```python" not in response and "def " in response:
|
191 |
response = "```python\n" + response + "\n```"
|
192 |
|
193 |
+
# More lenient validation but check for conversation markers
|
194 |
+
if (len(response.strip()) < 20 or
|
195 |
+
response.strip() == "Response:" or
|
196 |
+
response.strip().endswith("?") or
|
197 |
+
"can you" in response.lower() or
|
198 |
+
"let me know" in response.lower()):
|
199 |
print("Response validation failed - using fallback") # Debug logging
|
200 |
|
201 |
if "machine learning" in prompt.lower():
|
|
|
241 |
print(f"The sum of {num1} and {num2} is: {result}") # Output: The sum of 5 and 3 is: 8
|
242 |
```"""
|
243 |
else:
|
244 |
+
fallback_response = "I apologize, but I couldn't generate a complete response. Please try using a lower temperature (0.3-0.5) for more focused output."
|
245 |
|
246 |
response = fallback_response
|
247 |
|
|
|
254 |
# Initialize model wrapper
|
255 |
model_wrapper = ModelWrapper()
|
256 |
|
257 |
+
def generate_text(prompt, max_length=384, temperature=0.7, top_p=0.9): # Reduced default max_length
|
258 |
"""Gradio interface function"""
|
259 |
try:
|
260 |
if not prompt.strip():
|
|
|
271 |
print(f"Error in generate_text: {str(e)}")
|
272 |
return f"Error generating response: {str(e)}\nPlease try again with a different prompt or parameters."
|
273 |
|
274 |
+
# Create the Gradio interface with CPU-friendly defaults
|
275 |
demo = gr.Interface(
|
276 |
fn=generate_text,
|
277 |
inputs=[
|
|
|
282 |
),
|
283 |
gr.Slider(
|
284 |
minimum=64,
|
285 |
+
maximum=512,
|
286 |
+
value=384, # Reduced default
|
287 |
step=64,
|
288 |
label="Maximum Length",
|
289 |
info="Longer values = longer responses but slower generation"
|
|
|
291 |
gr.Slider(
|
292 |
minimum=0.1,
|
293 |
maximum=1.0,
|
294 |
+
value=0.5, # Reduced default
|
295 |
step=0.1,
|
296 |
label="Temperature",
|
297 |
info="Higher values = more creative, lower values = more focused"
|
|
|
299 |
gr.Slider(
|
300 |
minimum=0.1,
|
301 |
maximum=1.0,
|
302 |
+
value=0.85, # Adjusted default
|
303 |
step=0.1,
|
304 |
label="Top P",
|
305 |
info="Controls diversity of word choices"
|
306 |
),
|
307 |
],
|
308 |
outputs=gr.Textbox(label="Generated Response", lines=8),
|
309 |
+
title="Phi-2 QLoRA Fine-tuned Assistant (CPU Version)",
|
310 |
description="""This is a fine-tuned version of Microsoft's Phi-2 model using QLoRA.
|
311 |
The model has been trained to provide helpful responses for various tasks including coding, writing, and general assistance.
|
312 |
|
|
|
317 |
|
318 |
Tips:
|
319 |
- For code generation, use lower temperature (0.3-0.5)
|
320 |
+
- For creative writing, use higher temperature (0.5-0.7)
|
321 |
+
- Keep max length lower (256-384) for faster responses
|
322 |
""",
|
323 |
examples=[
|
324 |
[
|
325 |
"Write a Python function to calculate the factorial of a number and provide additional recursive function examples",
|
326 |
+
384,
|
327 |
0.5,
|
328 |
+
0.85
|
329 |
],
|
330 |
[
|
331 |
"Explain what machine learning is in simple terms and provide some real-world applications",
|
332 |
+
384,
|
333 |
+
0.5,
|
334 |
+
0.85
|
335 |
],
|
336 |
[
|
337 |
"Write a professional email to schedule a team meeting for next week to discuss project progress",
|
338 |
+
384,
|
339 |
+
0.5,
|
340 |
+
0.85
|
341 |
],
|
342 |
[
|
343 |
"Write a Python function to implement binary search algorithm with detailed comments",
|
344 |
+
384,
|
345 |
0.5,
|
346 |
+
0.85
|
347 |
],
|
348 |
[
|
349 |
"Explain the concept of object-oriented programming using a real-world analogy",
|
350 |
+
384,
|
351 |
+
0.5,
|
352 |
+
0.85
|
353 |
]
|
354 |
],
|
355 |
cache_examples=False
|