Spaces:
Sleeping
Sleeping
Commit
·
3cbb88b
1
Parent(s):
a27324e
added readme and app.py
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Phi-2 QLoRA Assistant Demo
|
3 |
emoji: 🤖
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
@@ -9,51 +9,59 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
# Phi-2 QLoRA Fine-tuned Assistant
|
13 |
|
14 |
-
This is a
|
15 |
|
16 |
## Model Description
|
17 |
|
18 |
- **Base Model**: Microsoft Phi-2
|
19 |
- **Training Method**: QLoRA (Quantized Low-Rank Adaptation)
|
20 |
-
- **
|
21 |
-
- **Primary Use Cases**: Code generation, technical
|
22 |
|
23 |
## Usage Tips
|
24 |
|
25 |
### For Code Generation (Temperature: 0.3-0.5)
|
26 |
```python
|
27 |
# Example prompt:
|
28 |
-
"Write a Python function to calculate
|
29 |
```
|
30 |
|
31 |
-
### For Technical Explanations (Temperature: 0.
|
32 |
```text
|
33 |
# Example prompt:
|
34 |
-
"Explain
|
35 |
```
|
36 |
|
37 |
-
### For Professional Writing (Temperature: 0.
|
38 |
```text
|
39 |
# Example prompt:
|
40 |
-
"Write a
|
41 |
```
|
42 |
|
43 |
-
## Parameters Guide
|
44 |
|
45 |
-
- **Maximum Length**: 64-
|
46 |
-
-
|
47 |
-
-
|
48 |
|
49 |
-
- **Temperature**: 0.1-
|
50 |
-
- 0.3-0.
|
51 |
-
- 0.
|
52 |
-
-
|
53 |
|
54 |
-
- **Top P**: 0.
|
55 |
- Controls diversity of word choices
|
56 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
## Model Links
|
59 |
|
@@ -70,15 +78,31 @@ This demo is released under the MIT License.
|
|
70 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
71 |
from peft import PeftModel
|
72 |
|
73 |
-
# Load base model and adapter
|
74 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
|
77 |
|
78 |
-
# Generate text
|
79 |
-
prompt = "Write a Python function to calculate
|
80 |
inputs = tokenizer(prompt, return_tensors="pt")
|
81 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
83 |
```
|
84 |
|
@@ -93,21 +117,24 @@ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
93 |
```
|
94 |
|
95 |
2. **Technical Explanation**:
|
96 |
-
"Machine learning is a branch of artificial intelligence that enables computers to learn from data without being explicitly programmed.
|
97 |
|
98 |
3. **Professional Writing**:
|
99 |
-
"
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
## Limitations
|
103 |
|
104 |
-
-
|
105 |
-
-
|
106 |
-
-
|
107 |
-
|
108 |
-
## Try It Out
|
109 |
-
|
110 |
-
You can try this model directly in your browser using our Gradio Space: [Phi2-QLoRA-Assistant Demo](https://huggingface.co/spaces/pradeep6kumar2024/phi2-qlora-assistant-demo)
|
111 |
|
112 |
## Acknowledgments
|
113 |
|
|
|
1 |
---
|
2 |
+
title: Phi-2 QLoRA Assistant Demo (CPU-Optimized)
|
3 |
emoji: 🤖
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Phi-2 QLoRA Fine-tuned Assistant (CPU-Optimized)
|
13 |
|
14 |
+
This is a lightweight CPU-optimized version of Microsoft's Phi-2 model fine-tuned using QLoRA (Quantized Low-Rank Adaptation) technique. The model has been optimized to run efficiently on CPU environments while still providing helpful responses for coding, explanations, and writing tasks.
|
15 |
|
16 |
## Model Description
|
17 |
|
18 |
- **Base Model**: Microsoft Phi-2
|
19 |
- **Training Method**: QLoRA (Quantized Low-Rank Adaptation)
|
20 |
+
- **Optimization**: CPU-optimized with reduced parameters
|
21 |
+
- **Primary Use Cases**: Code generation, technical explanations, and professional writing
|
22 |
|
23 |
## Usage Tips
|
24 |
|
25 |
### For Code Generation (Temperature: 0.3-0.5)
|
26 |
```python
|
27 |
# Example prompt:
|
28 |
+
"Write a Python function to calculate factorial"
|
29 |
```
|
30 |
|
31 |
+
### For Technical Explanations (Temperature: 0.4-0.5)
|
32 |
```text
|
33 |
# Example prompt:
|
34 |
+
"Explain machine learning simply"
|
35 |
```
|
36 |
|
37 |
+
### For Professional Writing (Temperature: 0.4-0.6)
|
38 |
```text
|
39 |
# Example prompt:
|
40 |
+
"Write a short email to schedule a meeting"
|
41 |
```
|
42 |
|
43 |
+
## Parameters Guide (CPU-Optimized)
|
44 |
|
45 |
+
- **Maximum Length**: 64-256 (default: 192)
|
46 |
+
- Keep this low (128-192) for faster responses on CPU
|
47 |
+
- Higher values will significantly slow down generation
|
48 |
|
49 |
+
- **Temperature**: 0.1-0.7 (default: 0.4)
|
50 |
+
- 0.3-0.4: Best for code generation
|
51 |
+
- 0.4-0.5: Best for explanations
|
52 |
+
- 0.5-0.6: Best for creative writing
|
53 |
|
54 |
+
- **Top P**: 0.5-0.9 (default: 0.8)
|
55 |
- Controls diversity of word choices
|
56 |
+
- Lower values = more focused responses
|
57 |
+
|
58 |
+
## Performance Notes
|
59 |
+
|
60 |
+
This is a CPU-optimized version with the following considerations:
|
61 |
+
- Responses will be shorter than the GPU version
|
62 |
+
- Generation takes longer on CPU (be patient)
|
63 |
+
- Memory usage is optimized for CPU environments
|
64 |
+
- Best for shorter, focused prompts
|
65 |
|
66 |
## Model Links
|
67 |
|
|
|
78 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
79 |
from peft import PeftModel
|
80 |
|
81 |
+
# Load base model and adapter (CPU optimized)
|
82 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
83 |
+
"microsoft/phi-2",
|
84 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
85 |
+
device_map="cpu",
|
86 |
+
low_cpu_mem_usage=True
|
87 |
+
)
|
88 |
+
model = PeftModel.from_pretrained(
|
89 |
+
base_model,
|
90 |
+
"pradeep6kumar2024/phi2-qlora-assistant",
|
91 |
+
torch_dtype=torch.float32,
|
92 |
+
device_map="cpu"
|
93 |
+
)
|
94 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
|
95 |
|
96 |
+
# Generate text (CPU optimized)
|
97 |
+
prompt = "Write a Python function to calculate factorial"
|
98 |
inputs = tokenizer(prompt, return_tensors="pt")
|
99 |
+
outputs = model.generate(
|
100 |
+
**inputs,
|
101 |
+
max_length=256,
|
102 |
+
temperature=0.4,
|
103 |
+
top_p=0.8,
|
104 |
+
num_beams=1 # Greedy decoding for CPU
|
105 |
+
)
|
106 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
107 |
```
|
108 |
|
|
|
117 |
```
|
118 |
|
119 |
2. **Technical Explanation**:
|
120 |
+
"Machine learning is a branch of artificial intelligence that enables computers to learn from data without being explicitly programmed. It works by analyzing patterns in data and making predictions based on those patterns."
|
121 |
|
122 |
3. **Professional Writing**:
|
123 |
+
"Subject: Team Meeting Request
|
124 |
+
|
125 |
+
Hi Team,
|
126 |
+
|
127 |
+
I'd like to schedule a meeting next week to discuss our current project. Please let me know your availability.
|
128 |
+
|
129 |
+
Thanks,
|
130 |
+
[Your Name]"
|
131 |
|
132 |
## Limitations
|
133 |
|
134 |
+
- CPU version generates shorter responses than GPU version
|
135 |
+
- Generation is slower on CPU environments
|
136 |
+
- Works best with clear, concise prompts
|
137 |
+
- Memory constraints may limit very complex generations
|
|
|
|
|
|
|
138 |
|
139 |
## Acknowledgments
|
140 |
|
app.py
CHANGED
@@ -240,9 +240,9 @@ demo = gr.Interface(
|
|
240 |
0.8
|
241 |
]
|
242 |
],
|
243 |
-
cache_examples=False
|
|
|
244 |
)
|
245 |
|
246 |
if __name__ == "__main__":
|
247 |
-
demo.
|
248 |
-
demo.launch()
|
|
|
240 |
0.8
|
241 |
]
|
242 |
],
|
243 |
+
cache_examples=False,
|
244 |
+
concurrency_limit=1 # Use the correct parameter for limiting concurrency
|
245 |
)
|
246 |
|
247 |
if __name__ == "__main__":
|
248 |
+
demo.launch(max_threads=1) # Limit the number of worker threads
|
|