Spaces:
Sleeping
Sleeping
Commit
·
8920961
1
Parent(s):
c64b3d5
fixed issues
Browse files- app.py +1 -0
- app.py.bak +248 -0
- app_fixed.py +249 -0
- requirements.txt +1 -1
- update_app.py +15 -0
app.py
CHANGED
@@ -245,4 +245,5 @@ demo = gr.Interface(
|
|
245 |
)
|
246 |
|
247 |
if __name__ == "__main__":
|
|
|
248 |
demo.launch(max_threads=1) # Limit the number of worker threads
|
|
|
245 |
)
|
246 |
|
247 |
if __name__ == "__main__":
|
248 |
+
# Using the modern approach without queue method
|
249 |
demo.launch(max_threads=1) # Limit the number of worker threads
|
app.py.bak
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftModel
|
5 |
+
import time
|
6 |
+
import gc
|
7 |
+
import os
|
8 |
+
import psutil
|
9 |
+
|
10 |
+
# Configuration
|
11 |
+
BASE_MODEL = "microsoft/phi-2"
|
12 |
+
ADAPTER_MODEL = "pradeep6kumar2024/phi2-qlora-assistant"
|
13 |
+
|
14 |
+
# Memory monitoring
|
15 |
+
def get_memory_usage():
|
16 |
+
process = psutil.Process(os.getpid())
|
17 |
+
return process.memory_info().rss / (1024 * 1024) # MB
|
18 |
+
|
19 |
+
class ModelWrapper:
|
20 |
+
def __init__(self):
|
21 |
+
self.model = None
|
22 |
+
self.tokenizer = None
|
23 |
+
self.loaded = False
|
24 |
+
|
25 |
+
def load_model(self):
|
26 |
+
if not self.loaded:
|
27 |
+
try:
|
28 |
+
# Force CPU usage
|
29 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
30 |
+
device = torch.device("cpu")
|
31 |
+
|
32 |
+
# Clear memory
|
33 |
+
gc.collect()
|
34 |
+
|
35 |
+
print(f"Memory before loading: {get_memory_usage():.2f} MB")
|
36 |
+
|
37 |
+
print("Loading tokenizer...")
|
38 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
39 |
+
BASE_MODEL,
|
40 |
+
trust_remote_code=True,
|
41 |
+
padding_side="left"
|
42 |
+
)
|
43 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
44 |
+
|
45 |
+
print(f"Memory after tokenizer: {get_memory_usage():.2f} MB")
|
46 |
+
|
47 |
+
print("Loading base model...")
|
48 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
49 |
+
BASE_MODEL,
|
50 |
+
torch_dtype=torch.float32,
|
51 |
+
device_map="cpu",
|
52 |
+
trust_remote_code=True,
|
53 |
+
use_flash_attention_2=False,
|
54 |
+
low_cpu_mem_usage=True,
|
55 |
+
offload_folder="offload"
|
56 |
+
)
|
57 |
+
|
58 |
+
print(f"Memory after base model: {get_memory_usage():.2f} MB")
|
59 |
+
|
60 |
+
print("Loading LoRA adapter...")
|
61 |
+
self.model = PeftModel.from_pretrained(
|
62 |
+
base_model,
|
63 |
+
ADAPTER_MODEL,
|
64 |
+
torch_dtype=torch.float32,
|
65 |
+
device_map="cpu"
|
66 |
+
)
|
67 |
+
|
68 |
+
# Free up memory
|
69 |
+
del base_model
|
70 |
+
gc.collect()
|
71 |
+
|
72 |
+
print(f"Memory after adapter: {get_memory_usage():.2f} MB")
|
73 |
+
|
74 |
+
self.model.eval()
|
75 |
+
print("Model loading complete!")
|
76 |
+
self.loaded = True
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Error during model loading: {str(e)}")
|
79 |
+
raise
|
80 |
+
|
81 |
+
def generate_response(self, prompt, max_length=256, temperature=0.7, top_p=0.9):
|
82 |
+
if not self.loaded:
|
83 |
+
self.load_model()
|
84 |
+
|
85 |
+
try:
|
86 |
+
# Use shorter prompts to save memory
|
87 |
+
if "function" in prompt.lower() and "python" in prompt.lower():
|
88 |
+
enhanced_prompt = f"""Write Python function: {prompt}"""
|
89 |
+
elif any(word in prompt.lower() for word in ["explain", "what is", "how does", "describe"]):
|
90 |
+
enhanced_prompt = f"""Explain briefly: {prompt}"""
|
91 |
+
else:
|
92 |
+
enhanced_prompt = prompt
|
93 |
+
|
94 |
+
print(f"Enhanced prompt: {enhanced_prompt}")
|
95 |
+
|
96 |
+
# Tokenize input with shorter max length
|
97 |
+
inputs = self.tokenizer(
|
98 |
+
enhanced_prompt,
|
99 |
+
return_tensors="pt",
|
100 |
+
truncation=True,
|
101 |
+
max_length=256, # Reduced for memory
|
102 |
+
padding=True
|
103 |
+
).to("cpu")
|
104 |
+
|
105 |
+
# Generate with minimal parameters
|
106 |
+
start_time = time.time()
|
107 |
+
with torch.no_grad():
|
108 |
+
outputs = self.model.generate(
|
109 |
+
**inputs,
|
110 |
+
max_length=min(max_length, 256), # Strict limit
|
111 |
+
min_length=10, # Reduced minimum
|
112 |
+
temperature=min(0.5, temperature),
|
113 |
+
top_p=min(0.85, top_p),
|
114 |
+
do_sample=True,
|
115 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
116 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
117 |
+
repetition_penalty=1.2,
|
118 |
+
no_repeat_ngram_size=3,
|
119 |
+
num_return_sequences=1,
|
120 |
+
early_stopping=True,
|
121 |
+
num_beams=1, # Greedy decoding to save memory
|
122 |
+
length_penalty=0.6
|
123 |
+
)
|
124 |
+
|
125 |
+
# Decode response
|
126 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
127 |
+
|
128 |
+
# Clean up the response
|
129 |
+
if response.startswith(enhanced_prompt):
|
130 |
+
response = response[len(enhanced_prompt):].strip()
|
131 |
+
|
132 |
+
# Basic cleanup only
|
133 |
+
response = response.replace("Human:", "").replace("Assistant:", "")
|
134 |
+
|
135 |
+
# Ensure code examples are properly formatted
|
136 |
+
if "```python" not in response and "def " in response:
|
137 |
+
response = "```python\n" + response + "\n```"
|
138 |
+
|
139 |
+
# Simple validation
|
140 |
+
if len(response.strip()) < 10:
|
141 |
+
if "function" in prompt.lower():
|
142 |
+
fallback_response = """```python
|
143 |
+
def add_numbers(a, b):
|
144 |
+
return a + b
|
145 |
+
```"""
|
146 |
+
else:
|
147 |
+
fallback_response = "I apologize, but I couldn't generate a response. Please try with a simpler prompt."
|
148 |
+
|
149 |
+
response = fallback_response
|
150 |
+
|
151 |
+
# Clear memory after generation
|
152 |
+
gc.collect()
|
153 |
+
|
154 |
+
generation_time = time.time() - start_time
|
155 |
+
return response, generation_time
|
156 |
+
except Exception as e:
|
157 |
+
print(f"Error during generation: {str(e)}")
|
158 |
+
raise
|
159 |
+
|
160 |
+
# Initialize model wrapper
|
161 |
+
model_wrapper = ModelWrapper()
|
162 |
+
|
163 |
+
def generate_text(prompt, max_length=256, temperature=0.5, top_p=0.85):
|
164 |
+
"""Gradio interface function"""
|
165 |
+
try:
|
166 |
+
if not prompt.strip():
|
167 |
+
return "Please enter a prompt."
|
168 |
+
|
169 |
+
response, gen_time = model_wrapper.generate_response(
|
170 |
+
prompt,
|
171 |
+
max_length=max_length,
|
172 |
+
temperature=temperature,
|
173 |
+
top_p=top_p
|
174 |
+
)
|
175 |
+
return f"Generated in {gen_time:.2f} seconds:\n\n{response}"
|
176 |
+
except Exception as e:
|
177 |
+
print(f"Error in generate_text: {str(e)}")
|
178 |
+
return f"Error generating response: {str(e)}\nPlease try again with a shorter prompt."
|
179 |
+
|
180 |
+
# Create a very lightweight Gradio interface
|
181 |
+
demo = gr.Interface(
|
182 |
+
fn=generate_text,
|
183 |
+
inputs=[
|
184 |
+
gr.Textbox(
|
185 |
+
label="Enter your prompt",
|
186 |
+
placeholder="Type your prompt here...",
|
187 |
+
lines=3
|
188 |
+
),
|
189 |
+
gr.Slider(
|
190 |
+
minimum=64,
|
191 |
+
maximum=256,
|
192 |
+
value=192,
|
193 |
+
step=32,
|
194 |
+
label="Maximum Length",
|
195 |
+
info="Keep this low for CPU"
|
196 |
+
),
|
197 |
+
gr.Slider(
|
198 |
+
minimum=0.1,
|
199 |
+
maximum=0.7,
|
200 |
+
value=0.4,
|
201 |
+
step=0.1,
|
202 |
+
label="Temperature",
|
203 |
+
info="Lower is better for CPU"
|
204 |
+
),
|
205 |
+
gr.Slider(
|
206 |
+
minimum=0.5,
|
207 |
+
maximum=0.9,
|
208 |
+
value=0.8,
|
209 |
+
step=0.1,
|
210 |
+
label="Top P",
|
211 |
+
info="Controls diversity"
|
212 |
+
),
|
213 |
+
],
|
214 |
+
outputs=gr.Textbox(label="Generated Response", lines=6),
|
215 |
+
title="Phi-2 QLoRA Assistant (CPU-Optimized)",
|
216 |
+
description="""This is a lightweight CPU version of the fine-tuned Phi-2 model.
|
217 |
+
|
218 |
+
Tips:
|
219 |
+
- Keep prompts short and specific
|
220 |
+
- Use lower maximum length (128-192) for faster responses
|
221 |
+
- Use lower temperature (0.3-0.5) for more reliable responses
|
222 |
+
""",
|
223 |
+
examples=[
|
224 |
+
[
|
225 |
+
"Write a Python function to calculate factorial",
|
226 |
+
192,
|
227 |
+
0.4,
|
228 |
+
0.8
|
229 |
+
],
|
230 |
+
[
|
231 |
+
"Explain machine learning simply",
|
232 |
+
192,
|
233 |
+
0.4,
|
234 |
+
0.8
|
235 |
+
],
|
236 |
+
[
|
237 |
+
"Write a short email to schedule a meeting",
|
238 |
+
192,
|
239 |
+
0.4,
|
240 |
+
0.8
|
241 |
+
]
|
242 |
+
],
|
243 |
+
cache_examples=False,
|
244 |
+
concurrency_limit=1 # Use the correct parameter for limiting concurrency
|
245 |
+
)
|
246 |
+
|
247 |
+
if __name__ == "__main__":
|
248 |
+
demo.launch(max_threads=1) # Limit the number of worker threads
|
app_fixed.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftModel
|
5 |
+
import time
|
6 |
+
import gc
|
7 |
+
import os
|
8 |
+
import psutil
|
9 |
+
|
10 |
+
# Configuration
|
11 |
+
BASE_MODEL = "microsoft/phi-2"
|
12 |
+
ADAPTER_MODEL = "pradeep6kumar2024/phi2-qlora-assistant"
|
13 |
+
|
14 |
+
# Memory monitoring
|
15 |
+
def get_memory_usage():
|
16 |
+
process = psutil.Process(os.getpid())
|
17 |
+
return process.memory_info().rss / (1024 * 1024) # MB
|
18 |
+
|
19 |
+
class ModelWrapper:
|
20 |
+
def __init__(self):
|
21 |
+
self.model = None
|
22 |
+
self.tokenizer = None
|
23 |
+
self.loaded = False
|
24 |
+
|
25 |
+
def load_model(self):
|
26 |
+
if not self.loaded:
|
27 |
+
try:
|
28 |
+
# Force CPU usage
|
29 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
30 |
+
device = torch.device("cpu")
|
31 |
+
|
32 |
+
# Clear memory
|
33 |
+
gc.collect()
|
34 |
+
|
35 |
+
print(f"Memory before loading: {get_memory_usage():.2f} MB")
|
36 |
+
|
37 |
+
print("Loading tokenizer...")
|
38 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
39 |
+
BASE_MODEL,
|
40 |
+
trust_remote_code=True,
|
41 |
+
padding_side="left"
|
42 |
+
)
|
43 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
44 |
+
|
45 |
+
print(f"Memory after tokenizer: {get_memory_usage():.2f} MB")
|
46 |
+
|
47 |
+
print("Loading base model...")
|
48 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
49 |
+
BASE_MODEL,
|
50 |
+
torch_dtype=torch.float32,
|
51 |
+
device_map="cpu",
|
52 |
+
trust_remote_code=True,
|
53 |
+
use_flash_attention_2=False,
|
54 |
+
low_cpu_mem_usage=True,
|
55 |
+
offload_folder="offload"
|
56 |
+
)
|
57 |
+
|
58 |
+
print(f"Memory after base model: {get_memory_usage():.2f} MB")
|
59 |
+
|
60 |
+
print("Loading LoRA adapter...")
|
61 |
+
self.model = PeftModel.from_pretrained(
|
62 |
+
base_model,
|
63 |
+
ADAPTER_MODEL,
|
64 |
+
torch_dtype=torch.float32,
|
65 |
+
device_map="cpu"
|
66 |
+
)
|
67 |
+
|
68 |
+
# Free up memory
|
69 |
+
del base_model
|
70 |
+
gc.collect()
|
71 |
+
|
72 |
+
print(f"Memory after adapter: {get_memory_usage():.2f} MB")
|
73 |
+
|
74 |
+
self.model.eval()
|
75 |
+
print("Model loading complete!")
|
76 |
+
self.loaded = True
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Error during model loading: {str(e)}")
|
79 |
+
raise
|
80 |
+
|
81 |
+
def generate_response(self, prompt, max_length=256, temperature=0.7, top_p=0.9):
|
82 |
+
if not self.loaded:
|
83 |
+
self.load_model()
|
84 |
+
|
85 |
+
try:
|
86 |
+
# Use shorter prompts to save memory
|
87 |
+
if "function" in prompt.lower() and "python" in prompt.lower():
|
88 |
+
enhanced_prompt = f"""Write Python function: {prompt}"""
|
89 |
+
elif any(word in prompt.lower() for word in ["explain", "what is", "how does", "describe"]):
|
90 |
+
enhanced_prompt = f"""Explain briefly: {prompt}"""
|
91 |
+
else:
|
92 |
+
enhanced_prompt = prompt
|
93 |
+
|
94 |
+
print(f"Enhanced prompt: {enhanced_prompt}")
|
95 |
+
|
96 |
+
# Tokenize input with shorter max length
|
97 |
+
inputs = self.tokenizer(
|
98 |
+
enhanced_prompt,
|
99 |
+
return_tensors="pt",
|
100 |
+
truncation=True,
|
101 |
+
max_length=256, # Reduced for memory
|
102 |
+
padding=True
|
103 |
+
).to("cpu")
|
104 |
+
|
105 |
+
# Generate with minimal parameters
|
106 |
+
start_time = time.time()
|
107 |
+
with torch.no_grad():
|
108 |
+
outputs = self.model.generate(
|
109 |
+
**inputs,
|
110 |
+
max_length=min(max_length, 256), # Strict limit
|
111 |
+
min_length=10, # Reduced minimum
|
112 |
+
temperature=min(0.5, temperature),
|
113 |
+
top_p=min(0.85, top_p),
|
114 |
+
do_sample=True,
|
115 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
116 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
117 |
+
repetition_penalty=1.2,
|
118 |
+
no_repeat_ngram_size=3,
|
119 |
+
num_return_sequences=1,
|
120 |
+
early_stopping=True,
|
121 |
+
num_beams=1, # Greedy decoding to save memory
|
122 |
+
length_penalty=0.6
|
123 |
+
)
|
124 |
+
|
125 |
+
# Decode response
|
126 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
127 |
+
|
128 |
+
# Clean up the response
|
129 |
+
if response.startswith(enhanced_prompt):
|
130 |
+
response = response[len(enhanced_prompt):].strip()
|
131 |
+
|
132 |
+
# Basic cleanup only
|
133 |
+
response = response.replace("Human:", "").replace("Assistant:", "")
|
134 |
+
|
135 |
+
# Ensure code examples are properly formatted
|
136 |
+
if "```python" not in response and "def " in response:
|
137 |
+
response = "```python\n" + response + "\n```"
|
138 |
+
|
139 |
+
# Simple validation
|
140 |
+
if len(response.strip()) < 10:
|
141 |
+
if "function" in prompt.lower():
|
142 |
+
fallback_response = """```python
|
143 |
+
def add_numbers(a, b):
|
144 |
+
return a + b
|
145 |
+
```"""
|
146 |
+
else:
|
147 |
+
fallback_response = "I apologize, but I couldn't generate a response. Please try with a simpler prompt."
|
148 |
+
|
149 |
+
response = fallback_response
|
150 |
+
|
151 |
+
# Clear memory after generation
|
152 |
+
gc.collect()
|
153 |
+
|
154 |
+
generation_time = time.time() - start_time
|
155 |
+
return response, generation_time
|
156 |
+
except Exception as e:
|
157 |
+
print(f"Error during generation: {str(e)}")
|
158 |
+
raise
|
159 |
+
|
160 |
+
# Initialize model wrapper
|
161 |
+
model_wrapper = ModelWrapper()
|
162 |
+
|
163 |
+
def generate_text(prompt, max_length=256, temperature=0.5, top_p=0.85):
|
164 |
+
"""Gradio interface function"""
|
165 |
+
try:
|
166 |
+
if not prompt.strip():
|
167 |
+
return "Please enter a prompt."
|
168 |
+
|
169 |
+
response, gen_time = model_wrapper.generate_response(
|
170 |
+
prompt,
|
171 |
+
max_length=max_length,
|
172 |
+
temperature=temperature,
|
173 |
+
top_p=top_p
|
174 |
+
)
|
175 |
+
return f"Generated in {gen_time:.2f} seconds:\n\n{response}"
|
176 |
+
except Exception as e:
|
177 |
+
print(f"Error in generate_text: {str(e)}")
|
178 |
+
return f"Error generating response: {str(e)}\nPlease try again with a shorter prompt."
|
179 |
+
|
180 |
+
# Create a very lightweight Gradio interface
|
181 |
+
demo = gr.Interface(
|
182 |
+
fn=generate_text,
|
183 |
+
inputs=[
|
184 |
+
gr.Textbox(
|
185 |
+
label="Enter your prompt",
|
186 |
+
placeholder="Type your prompt here...",
|
187 |
+
lines=3
|
188 |
+
),
|
189 |
+
gr.Slider(
|
190 |
+
minimum=64,
|
191 |
+
maximum=256,
|
192 |
+
value=192,
|
193 |
+
step=32,
|
194 |
+
label="Maximum Length",
|
195 |
+
info="Keep this low for CPU"
|
196 |
+
),
|
197 |
+
gr.Slider(
|
198 |
+
minimum=0.1,
|
199 |
+
maximum=0.7,
|
200 |
+
value=0.4,
|
201 |
+
step=0.1,
|
202 |
+
label="Temperature",
|
203 |
+
info="Lower is better for CPU"
|
204 |
+
),
|
205 |
+
gr.Slider(
|
206 |
+
minimum=0.5,
|
207 |
+
maximum=0.9,
|
208 |
+
value=0.8,
|
209 |
+
step=0.1,
|
210 |
+
label="Top P",
|
211 |
+
info="Controls diversity"
|
212 |
+
),
|
213 |
+
],
|
214 |
+
outputs=gr.Textbox(label="Generated Response", lines=6),
|
215 |
+
title="Phi-2 QLoRA Assistant (CPU-Optimized)",
|
216 |
+
description="""This is a lightweight CPU version of the fine-tuned Phi-2 model.
|
217 |
+
|
218 |
+
Tips:
|
219 |
+
- Keep prompts short and specific
|
220 |
+
- Use lower maximum length (128-192) for faster responses
|
221 |
+
- Use lower temperature (0.3-0.5) for more reliable responses
|
222 |
+
""",
|
223 |
+
examples=[
|
224 |
+
[
|
225 |
+
"Write a Python function to calculate factorial",
|
226 |
+
192,
|
227 |
+
0.4,
|
228 |
+
0.8
|
229 |
+
],
|
230 |
+
[
|
231 |
+
"Explain machine learning simply",
|
232 |
+
192,
|
233 |
+
0.4,
|
234 |
+
0.8
|
235 |
+
],
|
236 |
+
[
|
237 |
+
"Write a short email to schedule a meeting",
|
238 |
+
192,
|
239 |
+
0.4,
|
240 |
+
0.8
|
241 |
+
]
|
242 |
+
],
|
243 |
+
cache_examples=False,
|
244 |
+
concurrency_limit=1 # Use the correct parameter for limiting concurrency
|
245 |
+
)
|
246 |
+
|
247 |
+
if __name__ == "__main__":
|
248 |
+
# Using the modern approach without queue method
|
249 |
+
demo.launch(max_threads=1) # Limit the number of worker threads
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio
|
2 |
torch>=2.0.0
|
3 |
transformers>=4.36.0
|
4 |
peft>=0.7.0
|
|
|
1 |
+
gradio==4.44.1
|
2 |
torch>=2.0.0
|
3 |
transformers>=4.36.0
|
4 |
peft>=0.7.0
|
update_app.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
|
4 |
+
# Backup the original app.py
|
5 |
+
if os.path.exists('app.py'):
|
6 |
+
print("Backing up original app.py to app.py.bak")
|
7 |
+
shutil.copy('app.py', 'app.py.bak')
|
8 |
+
|
9 |
+
# Copy the fixed version to app.py
|
10 |
+
if os.path.exists('app_fixed.py'):
|
11 |
+
print("Replacing app.py with fixed version")
|
12 |
+
shutil.copy('app_fixed.py', 'app.py')
|
13 |
+
print("Done! The app.py file has been updated.")
|
14 |
+
else:
|
15 |
+
print("Error: app_fixed.py not found!")
|