Spaces:
Sleeping
Sleeping
Commit
·
93ed937
1
Parent(s):
c6e01dd
added readme and app.py
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🤖
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
@@ -9,136 +9,6 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
# Phi-2 QLoRA
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
## Model Description
|
17 |
-
|
18 |
-
- **Base Model**: Microsoft Phi-2
|
19 |
-
- **Training Method**: QLoRA (Quantized Low-Rank Adaptation)
|
20 |
-
- **Optimization**: CPU-optimized with reduced parameters
|
21 |
-
- **Primary Use Cases**: Code generation, technical explanations, and professional writing
|
22 |
-
|
23 |
-
## Usage Tips
|
24 |
-
|
25 |
-
### For Code Generation (Temperature: 0.3-0.5)
|
26 |
-
```python
|
27 |
-
# Example prompt:
|
28 |
-
"Write a Python function to calculate factorial"
|
29 |
-
```
|
30 |
-
|
31 |
-
### For Technical Explanations (Temperature: 0.4-0.5)
|
32 |
-
```text
|
33 |
-
# Example prompt:
|
34 |
-
"Explain machine learning simply"
|
35 |
-
```
|
36 |
-
|
37 |
-
### For Professional Writing (Temperature: 0.4-0.6)
|
38 |
-
```text
|
39 |
-
# Example prompt:
|
40 |
-
"Write a short email to schedule a meeting"
|
41 |
-
```
|
42 |
-
|
43 |
-
## Parameters Guide (CPU-Optimized)
|
44 |
-
|
45 |
-
- **Maximum Length**: 64-256 (default: 192)
|
46 |
-
- Keep this low (128-192) for faster responses on CPU
|
47 |
-
- Higher values will significantly slow down generation
|
48 |
-
|
49 |
-
- **Temperature**: 0.1-0.7 (default: 0.4)
|
50 |
-
- 0.3-0.4: Best for code generation
|
51 |
-
- 0.4-0.5: Best for explanations
|
52 |
-
- 0.5-0.6: Best for creative writing
|
53 |
-
|
54 |
-
- **Top P**: 0.5-0.9 (default: 0.8)
|
55 |
-
- Controls diversity of word choices
|
56 |
-
- Lower values = more focused responses
|
57 |
-
|
58 |
-
## Performance Notes
|
59 |
-
|
60 |
-
This is a CPU-optimized version with the following considerations:
|
61 |
-
- Responses will be shorter than the GPU version
|
62 |
-
- Generation takes longer on CPU (be patient)
|
63 |
-
- Memory usage is optimized for CPU environments
|
64 |
-
- Best for shorter, focused prompts
|
65 |
-
|
66 |
-
## Model Links
|
67 |
-
|
68 |
-
- **Model Card**: [pradeep6kumar2024/phi2-qlora-assistant](https://huggingface.co/pradeep6kumar2024/phi2-qlora-assistant)
|
69 |
-
- **Base Model**: [microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
|
70 |
-
|
71 |
-
## License
|
72 |
-
|
73 |
-
This demo is released under the MIT License.
|
74 |
-
|
75 |
-
## Example Usage
|
76 |
-
|
77 |
-
```python
|
78 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
79 |
-
from peft import PeftModel
|
80 |
-
import torch
|
81 |
-
|
82 |
-
# Load base model and adapter (CPU optimized)
|
83 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
84 |
-
"microsoft/phi-2",
|
85 |
-
torch_dtype=torch.float32, # Use float32 for CPU
|
86 |
-
device_map="cpu",
|
87 |
-
low_cpu_mem_usage=True
|
88 |
-
)
|
89 |
-
model = PeftModel.from_pretrained(
|
90 |
-
base_model,
|
91 |
-
"pradeep6kumar2024/phi2-qlora-assistant",
|
92 |
-
torch_dtype=torch.float32,
|
93 |
-
device_map="cpu"
|
94 |
-
)
|
95 |
-
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
|
96 |
-
|
97 |
-
# Generate text (CPU optimized)
|
98 |
-
prompt = "Write a Python function to calculate factorial"
|
99 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
100 |
-
outputs = model.generate(
|
101 |
-
**inputs,
|
102 |
-
max_length=256,
|
103 |
-
temperature=0.4,
|
104 |
-
top_p=0.8,
|
105 |
-
num_beams=1 # Greedy decoding for CPU
|
106 |
-
)
|
107 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
108 |
-
```
|
109 |
-
|
110 |
-
## Example Outputs
|
111 |
-
|
112 |
-
1. **Coding Task**:
|
113 |
-
```python
|
114 |
-
def factorial(n):
|
115 |
-
if n == 0 or n == 1:
|
116 |
-
return 1
|
117 |
-
return n * factorial(n-1)
|
118 |
-
```
|
119 |
-
|
120 |
-
2. **Technical Explanation**:
|
121 |
-
"Machine learning is a branch of artificial intelligence that enables computers to learn from data without being explicitly programmed. It works by analyzing patterns in data and making predictions based on those patterns."
|
122 |
-
|
123 |
-
3. **Professional Writing**:
|
124 |
-
"Subject: Team Meeting Request
|
125 |
-
|
126 |
-
Hi Team,
|
127 |
-
|
128 |
-
I'd like to schedule a meeting next week to discuss our current project. Please let me know your availability.
|
129 |
-
|
130 |
-
Thanks,
|
131 |
-
[Your Name]"
|
132 |
-
|
133 |
-
## Limitations
|
134 |
-
|
135 |
-
- CPU version generates shorter responses than GPU version
|
136 |
-
- Generation is slower on CPU environments
|
137 |
-
- Works best with clear, concise prompts
|
138 |
-
- Memory constraints may limit very complex generations
|
139 |
-
|
140 |
-
## Acknowledgments
|
141 |
-
|
142 |
-
- Microsoft for the Phi-2 base model
|
143 |
-
- Hugging Face for the transformers library and hosting
|
144 |
-
- The QLoRA paper authors for the fine-tuning technique
|
|
|
1 |
---
|
2 |
+
title: Phi2 QLoRA
|
3 |
emoji: 🤖
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Phi-2 QLoRA Assistant
|
13 |
|
14 |
+
A CPU-optimized version of Microsoft's Phi-2 model fine-tuned with QLoRA.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|