pragatheeswaran's picture
Update app.py
02fc7f1 verified
import os
print(os.system("apt-get update && apt-get install -y poppler-utils"))
os.system("apt-get update && apt-get install -y tesseract-ocr")
import tempfile
import streamlit as st
from PIL import Image
import pytesseract
# pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract"
from pdf2image import convert_from_path
import pypdf
from dotenv import load_dotenv
import time
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.output_parsers import StrOutputParser
from langchain_together import Together
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
import langgraph
from langgraph.graph import END
from typing import List, Dict, Any, TypedDict, Optional
# Load environment variables
load_dotenv()
# Set page configuration
st.set_page_config(
page_title="Document Q&A",
page_icon="πŸ“š",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better UI
st.markdown("""
<style>
/* Base styles */
.main {
background-color: #f8fafc;
color: #333;
padding: 1rem;
}
/* Sidebar styling */
[data-testid="stSidebar"] {
background-color: #1e293b;
color: #f8fafc;
padding: 1rem;
}
/* Example questions */
.example-button {
background-color: #7c3aed;
color: white;
border: none;
border-radius: 0.5rem;
padding: 0.75rem 1rem;
margin-bottom: 0.75rem;
cursor: pointer;
text-align: left;
display: block;
width: 100%;
font-size: 0.9rem;
}
/* Chat container */
.chat-container {
min-height: 60vh;
overflow-y: auto;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
margin-bottom: 1rem;
}
/* Sidebar title */
.sidebar-title {
color: #f8fafc;
font-size: 1.2rem;
font-weight: 600;
margin-bottom: 1rem;
padding-bottom: 0.5rem;
border-bottom: 1px solid #475569;
}
/* File list */
.file-item {
padding: 0.5rem;
background-color: #334155;
border-radius: 0.25rem;
margin-bottom: 0.5rem;
color: #f8fafc;
}
.file-name {
font-weight: 500;
}
.file-type {
font-size: 0.75rem;
color: #cbd5e1;
}
/* Instructions */
.instructions {
color: #cbd5e1;
}
.instructions ol {
margin-left: 1.5rem;
padding-left: 0;
}
.instructions li {
margin-bottom: 0.5rem;
}
/* Divider */
.divider {
height: 1px;
background-color: #475569;
margin: 1.5rem 0;
}
/* Override Streamlit button styles */
.stButton > button {
background-color: #7c3aed;
color: white;
}
/* Override Streamlit file uploader */
.stFileUploader > div > div {
background-color: #334155;
color: #f8fafc;
border: 1px dashed #7c3aed;
border-radius: 0.5rem;
padding: 1rem;
}
/* Controls section */
.controls-section {
margin-top: 1rem;
}
/* Control buttons */
.control-button {
background-color: #7c3aed;
color: white;
border: none;
border-radius: 0.25rem;
padding: 0.5rem 1rem;
margin-right: 0.5rem;
margin-bottom: 0.5rem;
cursor: pointer;
}
/* How to use section */
.how-to-use {
margin-bottom: 1.5rem;
}
.how-to-use ol {
margin-left: 1.5rem;
padding-left: 0;
}
.how-to-use li {
margin-bottom: 0.5rem;
color: #f8fafc;
}
/* Input field */
.stTextInput > div > div > input {
border: 1px solid #e2e8f0;
border-radius: 0.5rem;
padding: 0.75rem;
font-size: 1rem;
}
/* Form styling */
[data-testid="stForm"] {
border: none;
padding: 0;
}
/* Hide Streamlit branding */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
/* Chat messages */
.user-message {
background-color: #f3f4f6;
padding: 0.75rem;
border-radius: 0.5rem;
margin-bottom: 0.75rem;
color: #1e293b;
}
.assistant-message {
background-color: #f8fafc;
padding: 0.75rem;
border-radius: 0.5rem;
margin-bottom: 0.75rem;
border: 1px solid #e2e8f0;
color: #1e293b;
}
/* Chat input container */
.chat-input-container {
display: flex;
align-items: center;
background-color: white;
border-radius: 0.5rem;
padding: 0.5rem;
border: 1px solid #e2e8f0;
}
/* Document status */
.document-status {
padding: 0.5rem;
border-radius: 0.5rem;
margin-top: 0.5rem;
font-size: 0.9rem;
}
.status-success {
background-color: #dcfce7;
color: #166534;
}
.status-waiting {
background-color: #f3f4f6;
color: #4b5563;
}
/* Tabs styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
}
.stTabs [data-baseweb="tab"] {
background-color: #f1f5f9;
border-radius: 4px 4px 0 0;
padding: 8px 16px;
height: auto;
}
.stTabs [aria-selected="true"] {
background-color: white !important;
border-bottom: 2px solid #7c3aed !important;
}
/* Sidebar section headers */
.sidebar-section-header {
color: #f8fafc;
font-size: 1rem;
font-weight: 600;
margin-top: 1rem;
margin-bottom: 0.5rem;
}
/* Sidebar file uploader label */
.sidebar-uploader-label {
color: #f8fafc;
font-size: 0.9rem;
margin-bottom: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
# Example questions
EXAMPLE_QUESTIONS = [
"How do the different topics in these documents relate to each other?",
"What is the structure of this document?",
"Can you analyze the writing style of this text?",
"Extract all dates and events mentioned in the document",
"What are the main arguments presented in this document?"
]
# Initialize the LLM
@st.cache_resource
def get_llm():
return Together(
model="deepseek-ai/DeepSeek-V3",
temperature=0.7,
max_tokens=1024
)
# Initialize embeddings
@st.cache_resource
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Initialize text splitter
@st.cache_resource
def get_text_splitter():
return RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
# Function to extract text from PDF
def extract_text_from_pdf(pdf_file):
pdf_reader = pypdf.PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() or ""
return text
# Function to extract text from image using OCR
def extract_text_from_image(image_file):
image = Image.open(image_file)
text = pytesseract.image_to_string(image)
return text
# Function to process PDF with OCR if needed
def process_pdf_with_ocr(pdf_file):
# First try normal text extraction
text = extract_text_from_pdf(pdf_file)
# If little or no text was extracted, try OCR
if len(text.strip()) < 100:
images = convert_from_path(pdf_file)
text = ""
for image in images:
text += pytesseract.image_to_string(image)
return text
# Function to process uploaded files
def process_uploaded_files(uploaded_files):
all_texts = []
file_info = []
for file in uploaded_files:
# Create a temporary file
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(file.getvalue())
temp_file_path = temp_file.name
# Process based on file type
if file.name.lower().endswith('.pdf'):
text = process_pdf_with_ocr(temp_file_path)
file_type = "PDF"
elif file.name.lower().endswith(('.png', '.jpg', '.jpeg')):
text = extract_text_from_image(temp_file_path)
file_type = "Image"
elif file.name.lower().endswith(('.txt', '.md')):
text = file.getvalue().decode('utf-8')
file_type = "Text"
else:
text = f"Unsupported file format: {file.name}"
file_type = "Unknown"
all_texts.append(f"--- Content from {file.name} ---\n{text}")
file_info.append({"name": file.name, "type": file_type})
# Clean up the temporary file
os.unlink(temp_file_path)
return "\n\n".join(all_texts), file_info
# Function to create vector store from text
def create_vectorstore(text):
text_splitter = get_text_splitter()
chunks = text_splitter.split_text(text)
# Use FAISS instead of Chroma to avoid SQLite dependency
return FAISS.from_texts(
texts=chunks,
embedding=get_embeddings()
)
# Define the state schema for the graph using TypedDict
class GraphState(TypedDict):
messages: List
documents: List
thinking: str
# Define the RAG agent using LangGraph
def create_rag_agent(vectorstore):
# Define the retrieval component
def retrieve(state: GraphState) -> GraphState:
query = state["messages"][-1].content
docs = vectorstore.similarity_search(query, k=5)
return {"documents": docs, "messages": state["messages"], "thinking": state.get("thinking", "")}
# Define the generation component with thinking step
def generate(state: GraphState) -> GraphState:
messages = state["messages"]
documents = state["documents"]
# Extract relevant context from documents
context = "\n\n".join([f"Document {i+1}:\n{doc.page_content}" for i, doc in enumerate(documents)])
# First, have the model think about the query
thinking_prompt = ChatPromptTemplate.from_messages([
SystemMessage(content="You are an assistant that thinks step by step before answering."),
MessagesPlaceholder(variable_name="messages"),
SystemMessage(content=f"Here is relevant context from the knowledge base:\n{context}\n\nThink step by step about how to answer the query using this context.")
])
thinking = thinking_prompt | get_llm() | StrOutputParser()
thinking_result = thinking.invoke({"messages": messages})
# Then generate the final answer
answer_prompt = ChatPromptTemplate.from_messages([
SystemMessage(content="You are a helpful assistant that provides accurate information based on the given context."),
MessagesPlaceholder(variable_name="messages"),
SystemMessage(content=f"Here is relevant context from the knowledge base:\n{context}\n\nHere is your thinking process:\n{thinking_result}\n\nNow provide a clear and helpful answer based on this context and thinking.")
])
answer = answer_prompt | get_llm() | StrOutputParser()
response = answer.invoke({"messages": messages})
return {
"messages": messages + [AIMessage(content=response)],
"thinking": thinking_result,
"documents": documents
}
# Create the graph
from langgraph.graph import StateGraph
workflow = StateGraph(GraphState)
workflow.add_node("retrieve", retrieve)
workflow.add_node("generate", generate)
workflow.set_entry_point("retrieve")
workflow.add_edge("retrieve", "generate")
workflow.add_edge("generate", END)
# Compile the graph
app = workflow.compile()
return app
# Function to clear all session state
def clear_session_state():
for key in list(st.session_state.keys()):
del st.session_state[key]
# Main app layout
def main():
# Initialize session state for showing examples
if "show_examples" not in st.session_state:
st.session_state.show_examples = True
# Initialize messages if not exists
if "messages" not in st.session_state:
st.session_state.messages = []
# Initialize thinking history if not exists
if "thinking_history" not in st.session_state:
st.session_state.thinking_history = []
# Sidebar for document upload and controls
with st.sidebar:
st.markdown('<div class="sidebar-title">πŸ“š Document Q&A</div>', unsafe_allow_html=True)
st.markdown("""
<div class="how-to-use">
<ol>
<li>Upload your documents using the form below</li>
<li>Process the documents</li>
<li>Ask questions about your documents</li>
<li>View the AI's answers and thinking process</li>
</ol>
</div>
""", unsafe_allow_html=True)
# Document upload section
st.markdown('<div class="sidebar-section-header">πŸ“„ Upload Documents</div>', unsafe_allow_html=True)
st.markdown('<div class="sidebar-uploader-label">Select files to upload:</div>', unsafe_allow_html=True)
# File uploader
uploaded_files = st.file_uploader("Upload documents",
type=["pdf", "txt", "png", "jpg", "jpeg"],
accept_multiple_files=True,
label_visibility="collapsed")
# Process button
if uploaded_files:
if st.button("Process Documents"):
with st.spinner("Processing documents..."):
# Process progress bar
progress_bar = st.progress(0)
for i in range(100):
time.sleep(0.01)
progress_bar.progress(i + 1)
# Process the files
text, file_info = process_uploaded_files(uploaded_files)
st.session_state.vectorstore = create_vectorstore(text)
st.session_state.documents_processed = True
st.session_state.file_info = file_info
# Display success message
st.success(f"βœ… Processed {len(uploaded_files)} documents successfully!")
# Document info section
if "file_info" in st.session_state and st.session_state.file_info:
st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
st.markdown('<div class="sidebar-section-header">πŸ“‹ Document Information</div>', unsafe_allow_html=True)
# Display file list
for i, file in enumerate(st.session_state.file_info):
st.markdown(f"""
<div class="file-item">
<div class="file-name">{file['name']}</div>
<div class="file-type">{file['type']} file</div>
</div>
""", unsafe_allow_html=True)
# Remove documents button
if st.button("Remove All Documents"):
if "vectorstore" in st.session_state:
del st.session_state.vectorstore
if "file_info" in st.session_state:
del st.session_state.file_info
if "documents_processed" in st.session_state:
del st.session_state.documents_processed
st.success("All documents removed!")
st.rerun()
# Controls section
st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
st.markdown('<div class="sidebar-section-header">βš™οΈ Controls</div>', unsafe_allow_html=True)
# Clear chat button
if st.button("Clear Chat"):
if "messages" in st.session_state:
st.session_state.messages = []
if "thinking_history" in st.session_state:
st.session_state.thinking_history = []
st.rerun()
# Reset all button
if st.button("Reset All"):
clear_session_state()
st.rerun()
# Hide/Show examples button
if st.button("Hide Examples" if st.session_state.show_examples else "Show Examples"):
st.session_state.show_examples = not st.session_state.show_examples
st.rerun()
# Main content area
st.title("Document Q&A Assistant")
# Example questions section - only show if flag is True
if st.session_state.show_examples:
st.markdown("### Example Questions")
cols = st.columns(len(EXAMPLE_QUESTIONS))
for i, question in enumerate(EXAMPLE_QUESTIONS):
with cols[i]:
if st.button(question, key=f"example_{hash(question)}"):
st.session_state.messages.append(HumanMessage(content=question))
# Generate response if vectorstore exists
if "vectorstore" in st.session_state:
with st.spinner("Thinking..."):
# Create RAG agent
rag_agent = create_rag_agent(st.session_state.vectorstore)
# Run the agent
result = rag_agent.invoke({
"messages": [HumanMessage(content=question)],
"documents": [],
"thinking": ""
})
# Store thinking process
st.session_state.thinking_history.append(result["thinking"])
# Add AI message to chat history
st.session_state.messages.append(result["messages"][-1])
else:
# Add AI message to chat history
st.session_state.messages.append(AIMessage(content="Please upload and process documents first."))
st.rerun()
# Chat container
st.markdown("### πŸ’¬ Chat")
chat_container = st.container()
with chat_container:
# Display chat messages
if st.session_state.messages:
for i, message in enumerate(st.session_state.messages):
if isinstance(message, HumanMessage):
st.markdown(f"""
<div class="user-message">
<strong>User:</strong> {message.content}
</div>
""", unsafe_allow_html=True)
else:
st.markdown(f"""
<div class="assistant-message">
<strong>Assistant:</strong> {message.content}
</div>
""", unsafe_allow_html=True)
# Show thinking process if available
if "thinking_history" in st.session_state and i//2 < len(st.session_state.thinking_history):
thinking = st.session_state.thinking_history[i//2]
# Create a unique key for this thinking process
thinking_key = f"thinking_{i//2}"
# Store the visibility state in session_state if not already there
if thinking_key not in st.session_state:
st.session_state[thinking_key] = False
# Toggle button for thinking process
toggle_text = "Show thinking" if not st.session_state[thinking_key] else "Hide thinking"
# Create the toggle button
if st.button(toggle_text, key=f"toggle_{thinking_key}"):
st.session_state[thinking_key] = not st.session_state[thinking_key]
st.rerun()
# Show thinking process if toggled on
if st.session_state[thinking_key]:
with st.expander("Thinking Process", expanded=True):
st.write(thinking)
else:
st.info("Upload documents and start asking questions!")
# Chat input
st.markdown("### Ask a question about your documents")
with st.form(key="chat_form", clear_on_submit=True):
user_input = st.text_input("Type your question here...", key="user_question", label_visibility="collapsed")
cols = st.columns([6, 1])
with cols[0]:
submit_button = st.form_submit_button("Ask", use_container_width=True)
if submit_button and user_input:
# Add user message to chat history
st.session_state.messages.append(HumanMessage(content=user_input))
# Generate response if vectorstore exists
if "vectorstore" in st.session_state:
with st.spinner("Thinking..."):
# Create RAG agent
rag_agent = create_rag_agent(st.session_state.vectorstore)
# Run the agent
result = rag_agent.invoke({
"messages": [HumanMessage(content=user_input)],
"documents": [],
"thinking": ""
})
# Store thinking process
st.session_state.thinking_history.append(result["thinking"])
# Add AI message to chat history
st.session_state.messages.append(result["messages"][-1])
else:
# Add AI message to chat history
st.session_state.messages.append(AIMessage(content="Please upload and process documents first."))
# Rerun to update the UI
st.rerun()
if __name__ == "__main__":
main()