Upload 3 files
Browse files- README_app.md +28 -0
- app.py +663 -0
- requirements.txt +20 -0
README_app.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LangGraph Document Q&A Assistant
|
2 |
+
|
3 |
+
This repository showcases a Document Question & Answering (Q&A) Assistant built using [LangGraph](https://gritholdings.gitbook.io/docs/langgraph) and the [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3) model. The assistant allows users to upload documents and receive AI-generated answers to their queries based on the content of those documents.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- **Document Upload**: Users can upload various document formats for analysis.
|
8 |
+
- **Intelligent Q&A**: Utilizes the DeepSeek-V3 model to provide accurate answers based on the uploaded document's content.
|
9 |
+
- **Scalable Architecture**: Built with LangGraph to ensure modularity and scalability.
|
10 |
+
|
11 |
+
## Getting Started
|
12 |
+
|
13 |
+
Follow these instructions to set up and run the project locally.
|
14 |
+
|
15 |
+
### Prerequisites
|
16 |
+
|
17 |
+
- Python 3.8 or higher
|
18 |
+
- [LangGraph](https://gritholdings.gitbook.io/docs/langgraph)
|
19 |
+
- [DeepSeek-V3 model weights](https://huggingface.co/deepseek-ai/DeepSeek-V3)
|
20 |
+
|
21 |
+
### Installation
|
22 |
+
|
23 |
+
1. **Clone the Repository**:
|
24 |
+
|
25 |
+
```bash
|
26 |
+
git clone https://huggingface.co/pragatheeswaran/langgraph-document-qa-assistant
|
27 |
+
cd langgraph-document-qa-assistant
|
28 |
+
|
app.py
ADDED
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import streamlit as st
|
4 |
+
from PIL import Image
|
5 |
+
import pytesseract
|
6 |
+
from pdf2image import convert_from_path
|
7 |
+
import pypdf
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
import time
|
10 |
+
|
11 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
12 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
13 |
+
from langchain_core.output_parsers import StrOutputParser
|
14 |
+
from langchain_together import Together
|
15 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
16 |
+
from langchain_community.vectorstores import FAISS
|
17 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
18 |
+
|
19 |
+
import langgraph
|
20 |
+
from langgraph.graph import END
|
21 |
+
from typing import List, Dict, Any, TypedDict, Optional
|
22 |
+
|
23 |
+
# Load environment variables
|
24 |
+
load_dotenv()
|
25 |
+
|
26 |
+
# Set page configuration
|
27 |
+
st.set_page_config(
|
28 |
+
page_title="Document Q&A",
|
29 |
+
page_icon="📚",
|
30 |
+
layout="wide",
|
31 |
+
initial_sidebar_state="expanded"
|
32 |
+
)
|
33 |
+
|
34 |
+
# Custom CSS for better UI
|
35 |
+
st.markdown("""
|
36 |
+
<style>
|
37 |
+
/* Base styles */
|
38 |
+
.main {
|
39 |
+
background-color: #f8fafc;
|
40 |
+
color: #333;
|
41 |
+
padding: 1rem;
|
42 |
+
}
|
43 |
+
|
44 |
+
/* Sidebar styling */
|
45 |
+
[data-testid="stSidebar"] {
|
46 |
+
background-color: #1e293b;
|
47 |
+
color: #f8fafc;
|
48 |
+
padding: 1rem;
|
49 |
+
}
|
50 |
+
|
51 |
+
/* Example questions */
|
52 |
+
.example-button {
|
53 |
+
background-color: #7c3aed;
|
54 |
+
color: white;
|
55 |
+
border: none;
|
56 |
+
border-radius: 0.5rem;
|
57 |
+
padding: 0.75rem 1rem;
|
58 |
+
margin-bottom: 0.75rem;
|
59 |
+
cursor: pointer;
|
60 |
+
text-align: left;
|
61 |
+
display: block;
|
62 |
+
width: 100%;
|
63 |
+
font-size: 0.9rem;
|
64 |
+
}
|
65 |
+
|
66 |
+
/* Chat container */
|
67 |
+
.chat-container {
|
68 |
+
min-height: 60vh;
|
69 |
+
overflow-y: auto;
|
70 |
+
padding: 1rem;
|
71 |
+
background-color: white;
|
72 |
+
border-radius: 0.5rem;
|
73 |
+
border: 1px solid #e2e8f0;
|
74 |
+
margin-bottom: 1rem;
|
75 |
+
}
|
76 |
+
|
77 |
+
/* Sidebar title */
|
78 |
+
.sidebar-title {
|
79 |
+
color: #f8fafc;
|
80 |
+
font-size: 1.2rem;
|
81 |
+
font-weight: 600;
|
82 |
+
margin-bottom: 1rem;
|
83 |
+
padding-bottom: 0.5rem;
|
84 |
+
border-bottom: 1px solid #475569;
|
85 |
+
}
|
86 |
+
|
87 |
+
/* File list */
|
88 |
+
.file-item {
|
89 |
+
padding: 0.5rem;
|
90 |
+
background-color: #334155;
|
91 |
+
border-radius: 0.25rem;
|
92 |
+
margin-bottom: 0.5rem;
|
93 |
+
color: #f8fafc;
|
94 |
+
}
|
95 |
+
.file-name {
|
96 |
+
font-weight: 500;
|
97 |
+
}
|
98 |
+
.file-type {
|
99 |
+
font-size: 0.75rem;
|
100 |
+
color: #cbd5e1;
|
101 |
+
}
|
102 |
+
|
103 |
+
/* Instructions */
|
104 |
+
.instructions {
|
105 |
+
color: #cbd5e1;
|
106 |
+
}
|
107 |
+
.instructions ol {
|
108 |
+
margin-left: 1.5rem;
|
109 |
+
padding-left: 0;
|
110 |
+
}
|
111 |
+
.instructions li {
|
112 |
+
margin-bottom: 0.5rem;
|
113 |
+
}
|
114 |
+
|
115 |
+
/* Divider */
|
116 |
+
.divider {
|
117 |
+
height: 1px;
|
118 |
+
background-color: #475569;
|
119 |
+
margin: 1.5rem 0;
|
120 |
+
}
|
121 |
+
|
122 |
+
/* Override Streamlit button styles */
|
123 |
+
.stButton > button {
|
124 |
+
background-color: #7c3aed;
|
125 |
+
color: white;
|
126 |
+
}
|
127 |
+
|
128 |
+
/* Override Streamlit file uploader */
|
129 |
+
.stFileUploader > div > div {
|
130 |
+
background-color: #334155;
|
131 |
+
color: #f8fafc;
|
132 |
+
border: 1px dashed #7c3aed;
|
133 |
+
border-radius: 0.5rem;
|
134 |
+
padding: 1rem;
|
135 |
+
}
|
136 |
+
|
137 |
+
/* Controls section */
|
138 |
+
.controls-section {
|
139 |
+
margin-top: 1rem;
|
140 |
+
}
|
141 |
+
|
142 |
+
/* Control buttons */
|
143 |
+
.control-button {
|
144 |
+
background-color: #7c3aed;
|
145 |
+
color: white;
|
146 |
+
border: none;
|
147 |
+
border-radius: 0.25rem;
|
148 |
+
padding: 0.5rem 1rem;
|
149 |
+
margin-right: 0.5rem;
|
150 |
+
margin-bottom: 0.5rem;
|
151 |
+
cursor: pointer;
|
152 |
+
}
|
153 |
+
|
154 |
+
/* How to use section */
|
155 |
+
.how-to-use {
|
156 |
+
margin-bottom: 1.5rem;
|
157 |
+
}
|
158 |
+
.how-to-use ol {
|
159 |
+
margin-left: 1.5rem;
|
160 |
+
padding-left: 0;
|
161 |
+
}
|
162 |
+
.how-to-use li {
|
163 |
+
margin-bottom: 0.5rem;
|
164 |
+
color: #f8fafc;
|
165 |
+
}
|
166 |
+
|
167 |
+
/* Input field */
|
168 |
+
.stTextInput > div > div > input {
|
169 |
+
border: 1px solid #e2e8f0;
|
170 |
+
border-radius: 0.5rem;
|
171 |
+
padding: 0.75rem;
|
172 |
+
font-size: 1rem;
|
173 |
+
}
|
174 |
+
|
175 |
+
/* Form styling */
|
176 |
+
[data-testid="stForm"] {
|
177 |
+
border: none;
|
178 |
+
padding: 0;
|
179 |
+
}
|
180 |
+
|
181 |
+
/* Hide Streamlit branding */
|
182 |
+
#MainMenu {visibility: hidden;}
|
183 |
+
footer {visibility: hidden;}
|
184 |
+
|
185 |
+
/* Chat messages */
|
186 |
+
.user-message {
|
187 |
+
background-color: #f3f4f6;
|
188 |
+
padding: 0.75rem;
|
189 |
+
border-radius: 0.5rem;
|
190 |
+
margin-bottom: 0.75rem;
|
191 |
+
color: #1e293b;
|
192 |
+
}
|
193 |
+
|
194 |
+
.assistant-message {
|
195 |
+
background-color: #f8fafc;
|
196 |
+
padding: 0.75rem;
|
197 |
+
border-radius: 0.5rem;
|
198 |
+
margin-bottom: 0.75rem;
|
199 |
+
border: 1px solid #e2e8f0;
|
200 |
+
color: #1e293b;
|
201 |
+
}
|
202 |
+
|
203 |
+
/* Chat input container */
|
204 |
+
.chat-input-container {
|
205 |
+
display: flex;
|
206 |
+
align-items: center;
|
207 |
+
background-color: white;
|
208 |
+
border-radius: 0.5rem;
|
209 |
+
padding: 0.5rem;
|
210 |
+
border: 1px solid #e2e8f0;
|
211 |
+
}
|
212 |
+
|
213 |
+
/* Document status */
|
214 |
+
.document-status {
|
215 |
+
padding: 0.5rem;
|
216 |
+
border-radius: 0.5rem;
|
217 |
+
margin-top: 0.5rem;
|
218 |
+
font-size: 0.9rem;
|
219 |
+
}
|
220 |
+
|
221 |
+
.status-success {
|
222 |
+
background-color: #dcfce7;
|
223 |
+
color: #166534;
|
224 |
+
}
|
225 |
+
|
226 |
+
.status-waiting {
|
227 |
+
background-color: #f3f4f6;
|
228 |
+
color: #4b5563;
|
229 |
+
}
|
230 |
+
|
231 |
+
/* Tabs styling */
|
232 |
+
.stTabs [data-baseweb="tab-list"] {
|
233 |
+
gap: 8px;
|
234 |
+
}
|
235 |
+
|
236 |
+
.stTabs [data-baseweb="tab"] {
|
237 |
+
background-color: #f1f5f9;
|
238 |
+
border-radius: 4px 4px 0 0;
|
239 |
+
padding: 8px 16px;
|
240 |
+
height: auto;
|
241 |
+
}
|
242 |
+
|
243 |
+
.stTabs [aria-selected="true"] {
|
244 |
+
background-color: white !important;
|
245 |
+
border-bottom: 2px solid #7c3aed !important;
|
246 |
+
}
|
247 |
+
|
248 |
+
/* Sidebar section headers */
|
249 |
+
.sidebar-section-header {
|
250 |
+
color: #f8fafc;
|
251 |
+
font-size: 1rem;
|
252 |
+
font-weight: 600;
|
253 |
+
margin-top: 1rem;
|
254 |
+
margin-bottom: 0.5rem;
|
255 |
+
}
|
256 |
+
|
257 |
+
/* Sidebar file uploader label */
|
258 |
+
.sidebar-uploader-label {
|
259 |
+
color: #f8fafc;
|
260 |
+
font-size: 0.9rem;
|
261 |
+
margin-bottom: 0.5rem;
|
262 |
+
}
|
263 |
+
</style>
|
264 |
+
""", unsafe_allow_html=True)
|
265 |
+
|
266 |
+
# Example questions
|
267 |
+
EXAMPLE_QUESTIONS = [
|
268 |
+
"How do the different topics in these documents relate to each other?",
|
269 |
+
"What is the structure of this document?",
|
270 |
+
"Can you analyze the writing style of this text?",
|
271 |
+
"Extract all dates and events mentioned in the document",
|
272 |
+
"What are the main arguments presented in this document?"
|
273 |
+
]
|
274 |
+
|
275 |
+
# Initialize the LLM
|
276 |
+
@st.cache_resource
|
277 |
+
def get_llm():
|
278 |
+
return Together(
|
279 |
+
model="deepseek-ai/DeepSeek-V3",
|
280 |
+
temperature=0.7,
|
281 |
+
max_tokens=1024
|
282 |
+
)
|
283 |
+
|
284 |
+
# Initialize embeddings
|
285 |
+
@st.cache_resource
|
286 |
+
def get_embeddings():
|
287 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
288 |
+
|
289 |
+
# Initialize text splitter
|
290 |
+
@st.cache_resource
|
291 |
+
def get_text_splitter():
|
292 |
+
return RecursiveCharacterTextSplitter(
|
293 |
+
chunk_size=1000,
|
294 |
+
chunk_overlap=200
|
295 |
+
)
|
296 |
+
|
297 |
+
# Function to extract text from PDF
|
298 |
+
def extract_text_from_pdf(pdf_file):
|
299 |
+
pdf_reader = pypdf.PdfReader(pdf_file)
|
300 |
+
text = ""
|
301 |
+
for page in pdf_reader.pages:
|
302 |
+
text += page.extract_text() or ""
|
303 |
+
return text
|
304 |
+
|
305 |
+
# Function to extract text from image using OCR
|
306 |
+
def extract_text_from_image(image_file):
|
307 |
+
image = Image.open(image_file)
|
308 |
+
text = pytesseract.image_to_string(image)
|
309 |
+
return text
|
310 |
+
|
311 |
+
# Function to process PDF with OCR if needed
|
312 |
+
def process_pdf_with_ocr(pdf_file):
|
313 |
+
# First try normal text extraction
|
314 |
+
text = extract_text_from_pdf(pdf_file)
|
315 |
+
|
316 |
+
# If little or no text was extracted, try OCR
|
317 |
+
if len(text.strip()) < 100:
|
318 |
+
images = convert_from_path(pdf_file)
|
319 |
+
text = ""
|
320 |
+
for image in images:
|
321 |
+
text += pytesseract.image_to_string(image)
|
322 |
+
|
323 |
+
return text
|
324 |
+
|
325 |
+
# Function to process uploaded files
|
326 |
+
def process_uploaded_files(uploaded_files):
|
327 |
+
all_texts = []
|
328 |
+
file_info = []
|
329 |
+
|
330 |
+
for file in uploaded_files:
|
331 |
+
# Create a temporary file
|
332 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
333 |
+
temp_file.write(file.getvalue())
|
334 |
+
temp_file_path = temp_file.name
|
335 |
+
|
336 |
+
# Process based on file type
|
337 |
+
if file.name.lower().endswith('.pdf'):
|
338 |
+
text = process_pdf_with_ocr(temp_file_path)
|
339 |
+
file_type = "PDF"
|
340 |
+
elif file.name.lower().endswith(('.png', '.jpg', '.jpeg')):
|
341 |
+
text = extract_text_from_image(temp_file_path)
|
342 |
+
file_type = "Image"
|
343 |
+
elif file.name.lower().endswith(('.txt', '.md')):
|
344 |
+
text = file.getvalue().decode('utf-8')
|
345 |
+
file_type = "Text"
|
346 |
+
else:
|
347 |
+
text = f"Unsupported file format: {file.name}"
|
348 |
+
file_type = "Unknown"
|
349 |
+
|
350 |
+
all_texts.append(f"--- Content from {file.name} ---\n{text}")
|
351 |
+
file_info.append({"name": file.name, "type": file_type})
|
352 |
+
|
353 |
+
# Clean up the temporary file
|
354 |
+
os.unlink(temp_file_path)
|
355 |
+
|
356 |
+
return "\n\n".join(all_texts), file_info
|
357 |
+
|
358 |
+
# Function to create vector store from text
|
359 |
+
def create_vectorstore(text):
|
360 |
+
text_splitter = get_text_splitter()
|
361 |
+
chunks = text_splitter.split_text(text)
|
362 |
+
|
363 |
+
# Use FAISS instead of Chroma to avoid SQLite dependency
|
364 |
+
return FAISS.from_texts(
|
365 |
+
texts=chunks,
|
366 |
+
embedding=get_embeddings()
|
367 |
+
)
|
368 |
+
|
369 |
+
# Define the state schema for the graph using TypedDict
|
370 |
+
class GraphState(TypedDict):
|
371 |
+
messages: List
|
372 |
+
documents: List
|
373 |
+
thinking: str
|
374 |
+
|
375 |
+
# Define the RAG agent using LangGraph
|
376 |
+
def create_rag_agent(vectorstore):
|
377 |
+
# Define the retrieval component
|
378 |
+
def retrieve(state: GraphState) -> GraphState:
|
379 |
+
query = state["messages"][-1].content
|
380 |
+
docs = vectorstore.similarity_search(query, k=5)
|
381 |
+
return {"documents": docs, "messages": state["messages"], "thinking": state.get("thinking", "")}
|
382 |
+
|
383 |
+
# Define the generation component with thinking step
|
384 |
+
def generate(state: GraphState) -> GraphState:
|
385 |
+
messages = state["messages"]
|
386 |
+
documents = state["documents"]
|
387 |
+
|
388 |
+
# Extract relevant context from documents
|
389 |
+
context = "\n\n".join([f"Document {i+1}:\n{doc.page_content}" for i, doc in enumerate(documents)])
|
390 |
+
|
391 |
+
# First, have the model think about the query
|
392 |
+
thinking_prompt = ChatPromptTemplate.from_messages([
|
393 |
+
SystemMessage(content="You are an assistant that thinks step by step before answering."),
|
394 |
+
MessagesPlaceholder(variable_name="messages"),
|
395 |
+
SystemMessage(content=f"Here is relevant context from the knowledge base:\n{context}\n\nThink step by step about how to answer the query using this context.")
|
396 |
+
])
|
397 |
+
|
398 |
+
thinking = thinking_prompt | get_llm() | StrOutputParser()
|
399 |
+
thinking_result = thinking.invoke({"messages": messages})
|
400 |
+
|
401 |
+
# Then generate the final answer
|
402 |
+
answer_prompt = ChatPromptTemplate.from_messages([
|
403 |
+
SystemMessage(content="You are a helpful assistant that provides accurate information based on the given context."),
|
404 |
+
MessagesPlaceholder(variable_name="messages"),
|
405 |
+
SystemMessage(content=f"Here is relevant context from the knowledge base:\n{context}\n\nHere is your thinking process:\n{thinking_result}\n\nNow provide a clear and helpful answer based on this context and thinking.")
|
406 |
+
])
|
407 |
+
|
408 |
+
answer = answer_prompt | get_llm() | StrOutputParser()
|
409 |
+
response = answer.invoke({"messages": messages})
|
410 |
+
|
411 |
+
return {
|
412 |
+
"messages": messages + [AIMessage(content=response)],
|
413 |
+
"thinking": thinking_result,
|
414 |
+
"documents": documents
|
415 |
+
}
|
416 |
+
|
417 |
+
# Create the graph
|
418 |
+
from langgraph.graph import StateGraph
|
419 |
+
workflow = StateGraph(GraphState)
|
420 |
+
|
421 |
+
workflow.add_node("retrieve", retrieve)
|
422 |
+
workflow.add_node("generate", generate)
|
423 |
+
|
424 |
+
workflow.set_entry_point("retrieve")
|
425 |
+
workflow.add_edge("retrieve", "generate")
|
426 |
+
workflow.add_edge("generate", END)
|
427 |
+
|
428 |
+
# Compile the graph
|
429 |
+
app = workflow.compile()
|
430 |
+
|
431 |
+
return app
|
432 |
+
|
433 |
+
# Function to clear all session state
|
434 |
+
def clear_session_state():
|
435 |
+
for key in list(st.session_state.keys()):
|
436 |
+
del st.session_state[key]
|
437 |
+
|
438 |
+
# Main app layout
|
439 |
+
def main():
|
440 |
+
# Initialize session state for showing examples
|
441 |
+
if "show_examples" not in st.session_state:
|
442 |
+
st.session_state.show_examples = True
|
443 |
+
|
444 |
+
# Initialize messages if not exists
|
445 |
+
if "messages" not in st.session_state:
|
446 |
+
st.session_state.messages = []
|
447 |
+
|
448 |
+
# Initialize thinking history if not exists
|
449 |
+
if "thinking_history" not in st.session_state:
|
450 |
+
st.session_state.thinking_history = []
|
451 |
+
|
452 |
+
# Sidebar for document upload and controls
|
453 |
+
with st.sidebar:
|
454 |
+
st.markdown('<div class="sidebar-title">📚 Document Q&A</div>', unsafe_allow_html=True)
|
455 |
+
|
456 |
+
st.markdown("""
|
457 |
+
<div class="how-to-use">
|
458 |
+
<ol>
|
459 |
+
<li>Upload your documents using the form below</li>
|
460 |
+
<li>Process the documents</li>
|
461 |
+
<li>Ask questions about your documents</li>
|
462 |
+
<li>View the AI's answers and thinking process</li>
|
463 |
+
</ol>
|
464 |
+
</div>
|
465 |
+
""", unsafe_allow_html=True)
|
466 |
+
|
467 |
+
# Document upload section
|
468 |
+
st.markdown('<div class="sidebar-section-header">📄 Upload Documents</div>', unsafe_allow_html=True)
|
469 |
+
st.markdown('<div class="sidebar-uploader-label">Select files to upload:</div>', unsafe_allow_html=True)
|
470 |
+
|
471 |
+
# File uploader
|
472 |
+
uploaded_files = st.file_uploader("Upload documents",
|
473 |
+
type=["pdf", "txt", "png", "jpg", "jpeg"],
|
474 |
+
accept_multiple_files=True,
|
475 |
+
label_visibility="collapsed")
|
476 |
+
|
477 |
+
# Process button
|
478 |
+
if uploaded_files:
|
479 |
+
if st.button("Process Documents"):
|
480 |
+
with st.spinner("Processing documents..."):
|
481 |
+
# Process progress bar
|
482 |
+
progress_bar = st.progress(0)
|
483 |
+
for i in range(100):
|
484 |
+
time.sleep(0.01)
|
485 |
+
progress_bar.progress(i + 1)
|
486 |
+
|
487 |
+
# Process the files
|
488 |
+
text, file_info = process_uploaded_files(uploaded_files)
|
489 |
+
st.session_state.vectorstore = create_vectorstore(text)
|
490 |
+
st.session_state.documents_processed = True
|
491 |
+
st.session_state.file_info = file_info
|
492 |
+
|
493 |
+
# Display success message
|
494 |
+
st.success(f"✅ Processed {len(uploaded_files)} documents successfully!")
|
495 |
+
|
496 |
+
# Document info section
|
497 |
+
if "file_info" in st.session_state and st.session_state.file_info:
|
498 |
+
st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
|
499 |
+
st.markdown('<div class="sidebar-section-header">📋 Document Information</div>', unsafe_allow_html=True)
|
500 |
+
|
501 |
+
# Display file list
|
502 |
+
for i, file in enumerate(st.session_state.file_info):
|
503 |
+
st.markdown(f"""
|
504 |
+
<div class="file-item">
|
505 |
+
<div class="file-name">{file['name']}</div>
|
506 |
+
<div class="file-type">{file['type']} file</div>
|
507 |
+
</div>
|
508 |
+
""", unsafe_allow_html=True)
|
509 |
+
|
510 |
+
# Remove documents button
|
511 |
+
if st.button("Remove All Documents"):
|
512 |
+
if "vectorstore" in st.session_state:
|
513 |
+
del st.session_state.vectorstore
|
514 |
+
if "file_info" in st.session_state:
|
515 |
+
del st.session_state.file_info
|
516 |
+
if "documents_processed" in st.session_state:
|
517 |
+
del st.session_state.documents_processed
|
518 |
+
st.success("All documents removed!")
|
519 |
+
st.rerun()
|
520 |
+
|
521 |
+
# Controls section
|
522 |
+
st.markdown('<div class="divider"></div>', unsafe_allow_html=True)
|
523 |
+
st.markdown('<div class="sidebar-section-header">⚙️ Controls</div>', unsafe_allow_html=True)
|
524 |
+
|
525 |
+
# Clear chat button
|
526 |
+
if st.button("Clear Chat"):
|
527 |
+
if "messages" in st.session_state:
|
528 |
+
st.session_state.messages = []
|
529 |
+
if "thinking_history" in st.session_state:
|
530 |
+
st.session_state.thinking_history = []
|
531 |
+
st.rerun()
|
532 |
+
|
533 |
+
# Reset all button
|
534 |
+
if st.button("Reset All"):
|
535 |
+
clear_session_state()
|
536 |
+
st.rerun()
|
537 |
+
|
538 |
+
# Hide/Show examples button
|
539 |
+
if st.button("Hide Examples" if st.session_state.show_examples else "Show Examples"):
|
540 |
+
st.session_state.show_examples = not st.session_state.show_examples
|
541 |
+
st.rerun()
|
542 |
+
|
543 |
+
# Main content area
|
544 |
+
st.title("Document Q&A Assistant")
|
545 |
+
|
546 |
+
# Example questions section - only show if flag is True
|
547 |
+
if st.session_state.show_examples:
|
548 |
+
st.markdown("### Example Questions")
|
549 |
+
cols = st.columns(len(EXAMPLE_QUESTIONS))
|
550 |
+
for i, question in enumerate(EXAMPLE_QUESTIONS):
|
551 |
+
with cols[i]:
|
552 |
+
if st.button(question, key=f"example_{hash(question)}"):
|
553 |
+
st.session_state.messages.append(HumanMessage(content=question))
|
554 |
+
|
555 |
+
# Generate response if vectorstore exists
|
556 |
+
if "vectorstore" in st.session_state:
|
557 |
+
with st.spinner("Thinking..."):
|
558 |
+
# Create RAG agent
|
559 |
+
rag_agent = create_rag_agent(st.session_state.vectorstore)
|
560 |
+
|
561 |
+
# Run the agent
|
562 |
+
result = rag_agent.invoke({
|
563 |
+
"messages": [HumanMessage(content=question)],
|
564 |
+
"documents": [],
|
565 |
+
"thinking": ""
|
566 |
+
})
|
567 |
+
|
568 |
+
# Store thinking process
|
569 |
+
st.session_state.thinking_history.append(result["thinking"])
|
570 |
+
|
571 |
+
# Add AI message to chat history
|
572 |
+
st.session_state.messages.append(result["messages"][-1])
|
573 |
+
else:
|
574 |
+
# Add AI message to chat history
|
575 |
+
st.session_state.messages.append(AIMessage(content="Please upload and process documents first."))
|
576 |
+
st.rerun()
|
577 |
+
|
578 |
+
# Chat container
|
579 |
+
st.markdown("### 💬 Chat")
|
580 |
+
chat_container = st.container()
|
581 |
+
|
582 |
+
with chat_container:
|
583 |
+
# Display chat messages
|
584 |
+
if st.session_state.messages:
|
585 |
+
for i, message in enumerate(st.session_state.messages):
|
586 |
+
if isinstance(message, HumanMessage):
|
587 |
+
st.markdown(f"""
|
588 |
+
<div class="user-message">
|
589 |
+
<strong>User:</strong> {message.content}
|
590 |
+
</div>
|
591 |
+
""", unsafe_allow_html=True)
|
592 |
+
else:
|
593 |
+
st.markdown(f"""
|
594 |
+
<div class="assistant-message">
|
595 |
+
<strong>Assistant:</strong> {message.content}
|
596 |
+
</div>
|
597 |
+
""", unsafe_allow_html=True)
|
598 |
+
|
599 |
+
# Show thinking process if available
|
600 |
+
if "thinking_history" in st.session_state and i//2 < len(st.session_state.thinking_history):
|
601 |
+
thinking = st.session_state.thinking_history[i//2]
|
602 |
+
|
603 |
+
# Create a unique key for this thinking process
|
604 |
+
thinking_key = f"thinking_{i//2}"
|
605 |
+
|
606 |
+
# Store the visibility state in session_state if not already there
|
607 |
+
if thinking_key not in st.session_state:
|
608 |
+
st.session_state[thinking_key] = False
|
609 |
+
|
610 |
+
# Toggle button for thinking process
|
611 |
+
toggle_text = "Show thinking" if not st.session_state[thinking_key] else "Hide thinking"
|
612 |
+
|
613 |
+
# Create the toggle button
|
614 |
+
if st.button(toggle_text, key=f"toggle_{thinking_key}"):
|
615 |
+
st.session_state[thinking_key] = not st.session_state[thinking_key]
|
616 |
+
st.rerun()
|
617 |
+
|
618 |
+
# Show thinking process if toggled on
|
619 |
+
if st.session_state[thinking_key]:
|
620 |
+
with st.expander("Thinking Process", expanded=True):
|
621 |
+
st.write(thinking)
|
622 |
+
else:
|
623 |
+
st.info("Upload documents and start asking questions!")
|
624 |
+
|
625 |
+
# Chat input
|
626 |
+
st.markdown("### Ask a question about your documents")
|
627 |
+
with st.form(key="chat_form", clear_on_submit=True):
|
628 |
+
user_input = st.text_input("Type your question here...", key="user_question", label_visibility="collapsed")
|
629 |
+
cols = st.columns([6, 1])
|
630 |
+
with cols[0]:
|
631 |
+
submit_button = st.form_submit_button("Ask", use_container_width=True)
|
632 |
+
|
633 |
+
if submit_button and user_input:
|
634 |
+
# Add user message to chat history
|
635 |
+
st.session_state.messages.append(HumanMessage(content=user_input))
|
636 |
+
|
637 |
+
# Generate response if vectorstore exists
|
638 |
+
if "vectorstore" in st.session_state:
|
639 |
+
with st.spinner("Thinking..."):
|
640 |
+
# Create RAG agent
|
641 |
+
rag_agent = create_rag_agent(st.session_state.vectorstore)
|
642 |
+
|
643 |
+
# Run the agent
|
644 |
+
result = rag_agent.invoke({
|
645 |
+
"messages": [HumanMessage(content=user_input)],
|
646 |
+
"documents": [],
|
647 |
+
"thinking": ""
|
648 |
+
})
|
649 |
+
|
650 |
+
# Store thinking process
|
651 |
+
st.session_state.thinking_history.append(result["thinking"])
|
652 |
+
|
653 |
+
# Add AI message to chat history
|
654 |
+
st.session_state.messages.append(result["messages"][-1])
|
655 |
+
else:
|
656 |
+
# Add AI message to chat history
|
657 |
+
st.session_state.messages.append(AIMessage(content="Please upload and process documents first."))
|
658 |
+
|
659 |
+
# Rerun to update the UI
|
660 |
+
st.rerun()
|
661 |
+
|
662 |
+
if __name__ == "__main__":
|
663 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain>=0.1.0
|
2 |
+
langchain-community>=0.0.13
|
3 |
+
langchain-together>=0.0.2
|
4 |
+
langchain-core>=0.1.10
|
5 |
+
langchain-text-splitters>=0.0.1
|
6 |
+
langchain-openai>=0.0.2
|
7 |
+
langchain-chroma>=0.0.1
|
8 |
+
langchain-experimental>=0.0.37
|
9 |
+
langchain-groq>=0.1.1
|
10 |
+
langsmith>=0.0.69
|
11 |
+
chromadb>=0.4.22
|
12 |
+
pydantic>=2.5.2
|
13 |
+
streamlit>=1.29.0
|
14 |
+
streamlit-chat>=0.1.1
|
15 |
+
python-dotenv>=1.0.0
|
16 |
+
pypdf>=3.17.1
|
17 |
+
pillow>=10.1.0
|
18 |
+
pytesseract>=0.3.10
|
19 |
+
pdf2image>=1.16.3
|
20 |
+
langgraph>=0.0.19
|