Spaces:
Runtime error
Runtime error
File size: 4,541 Bytes
2869f1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
from dataclasses import dataclass
from typing import List, Optional
from utils import get_preprocess_function, get_utterance_processing_functions, byt5_decode_batch, consistent
from utils import PROGRAM_SPECIAL_TOKEN, UTTERANCES_SPECIAL_TOKEN, GT_PROGRAM_SPECIAL_TOKEN
from greenery import parse
from greenery.parse import NoMatch
import numpy as np
import torch
class Agent:
def __init__(self,
model_path: str,
gen_config: dict,
inference_batch_size: int = 1,
):
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.gen_config = GenerationConfig(**gen_config)
self.inference_batch_size = inference_batch_size
@dataclass
class ListenerOutput:
programs: List[List[str]]
idx: Optional[List[List[int]]] = None
decoded: Optional[List[List[str]]] = None
decoded_scores: Optional[List[List[float]]] = None
pruned: Optional[List[List[str]]] = None
class Listener(Agent):
def __init__(self,
model_path,
gen_config,
inference_batch_size=4,
label_pos="suffix",
idx: bool=True,
program_special_token=PROGRAM_SPECIAL_TOKEN,
utterances_special_token=UTTERANCES_SPECIAL_TOKEN
):
super().__init__(
model_path,
gen_config,
inference_batch_size,
)
self.label_pos = label_pos
self.idx = idx
self.program_special_token = program_special_token
self.utterances_special_token = utterances_special_token
self.utterances_to_string, self.string_to_utterances = (
get_utterance_processing_functions(
label_pos, idx, separator=utterances_special_token
)
)
self.device = self.model.device
def synthesize(self, context, return_scores=False, enforce_consistency=True):
# If context is a list of utterances, convert to string
if isinstance(context[0], list):
context_str = list(map(self.utterances_to_string, context))
else:
context_str = context
context_tokens = self.tokenizer(
[f"{self.utterances_special_token}{c}" if not c.startswith(self.utterances_special_token) else c
for c in context_str],
return_tensors="pt",
padding=True
).to(self.device)
decoder_inputs = self.tokenizer(
[self.program_special_token for _ in context], return_tensors="pt",
add_special_tokens=False
).to(self.device)
outputs = self.model.generate(**context_tokens,
decoder_input_ids=decoder_inputs.input_ids,
generation_config=self.gen_config,
return_dict_in_generate=True,
output_scores=True
)
decoded_batch = byt5_decode_batch(outputs.sequences.reshape((len(context), -1, outputs.sequences.shape[-1])).tolist(), skip_position_token=True, skip_special_tokens=True)
consistent_programs = []
idxs = []
for decoded, ctx in zip(decoded_batch, context):
cp = []
idx = []
for i, p in enumerate(decoded):
if enforce_consistency:
if consistent(p, ctx):
cp.append(p)
idx.append(i)
else:
cp.append(p)
idx.append(i)
consistent_programs.append(cp)
idxs.append(idx)
logprobs = torch.stack(outputs.scores, dim=1).log_softmax(dim=-1)
gen_probs = torch.gather(logprobs, 2, outputs.sequences[:, 1:, None]).squeeze(-1)
gen_probs.masked_fill_(gen_probs.isinf(), 0)
scores = gen_probs.sum(-1)
n_decoded = scores.shape[0]
n_seq = n_decoded // len(context)
scores = scores.reshape((len(context), n_seq))
scores_list = scores.tolist()
if return_scores:
return ListenerOutput(
consistent_programs,
idxs,
decoded_batch,
scores_list
)
else:
return ListenerOutput(consistent_programs)
|