pragnakalp's picture
Create app.py
db40a0b
raw
history blame
2.08 kB
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import gc
import gradio as gr
import pandas as pd
from transformers import pipeline
def huggingface_result_page(paragraph):
if article.strip():
model_base = pipeline('sentiment-analysis')
sen_list = paragraph
sen_list = sen_list.split('\n')
sen_list_temp = sen_list[0:]
results = []
temp_result_dict = []
for sen in sen_list_temp:
sen = sen.strip()
if sen:
cur_result = model_base(sen)[0]
temp_result_dict.append(sen)
results.append(cur_result['label'])
result = {
'Input': sen_list, 'Sentiment': results
}
print("LENGTH of results ====> ",str(len(results)))
print("LENGTH of sen_list ====> ",str(len(temp_result_dict)))
return pd.DataFrame(result)
else:
raise gr.Error("Please enter text in inputbox!!!!")
inputs = gr.Textbox(lines=10, label="Paragraph")
outputs = gr.Dataframe(row_count = (3, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Sentiment"],wrap=True)
demo = gr.Interface(
huggingface_result_page,
inputs,
outputs,
title="Huggingface Sentiment Analysis",
css=".gradio-container {background-color: lightgray}",
article = """Provide us your feedback on this demo and feel free to contact us at <a href="mailto:[email protected]" target="_blank">[email protected]</a>
if you want to have your own sentiment analysis system. We will be happy to serve you for your sentiment analysis requirement.
And don't forget to check out more interesting <a href="https://www.pragnakalp.com/services/natural-language-processing-services/" target="_blank">NLP services</a>
we are offering.
<p style='text-align: center;'>Developed by :<a href="https://www.pragnakalp.com" target="_blank"> Pragnakalp Techlabs</a></p>"""
)
demo.launch()