|
|
|
import os |
|
import csv |
|
import json |
|
import requests |
|
import re as r |
|
import gradio as gr |
|
import pandas as pd |
|
from transformers import pipeline |
|
from huggingface_hub import Repository |
|
from urllib.request import urlopen |
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
DATASET_NAME = "huggingface_sentiment_analysis_dataset" |
|
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/huggingface_sentiment_analysis_dataset" |
|
DATA_FILENAME = "hf_sentiment_logs.csv" |
|
DATA_FILE = os.path.join("hf_sentiment_logs", DATA_FILENAME) |
|
DATASET_REPO_ID = "pragnakalp/huggingface_sentiment_analysis_dataset" |
|
print("is none?", HF_TOKEN is None) |
|
|
|
input_para = "I am happy\nI am sad\nI am not feeling well\nHe is a very good person\nHe is bad person\nI love pineapple\nI hate mangoes" |
|
|
|
try: |
|
hf_hub_download( |
|
repo_id=DATASET_REPO_ID, |
|
filename=DATA_FILENAME, |
|
cache_dir=DATA_DIRNAME, |
|
force_filename=DATA_FILENAME |
|
) |
|
|
|
except: |
|
print("file not found") |
|
|
|
repo = Repository( |
|
local_dir="hf_sentiment_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN |
|
) |
|
|
|
def getIP(): |
|
d = str(urlopen('http://checkip.dyndns.com/') |
|
.read()) |
|
|
|
return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1) |
|
|
|
def get_location(ip_addr): |
|
ip=ip_addr |
|
|
|
req_data={ |
|
"ip":ip, |
|
"token":"pkml123" |
|
} |
|
url = "https://demos.pragnakalp.com/get-ip-location" |
|
|
|
|
|
|
|
headers = {'Content-Type': 'application/json'} |
|
|
|
response = requests.request("POST", url, headers=headers, data=json.dumps(req_data)) |
|
response = response.json() |
|
print("response======>>",response) |
|
return response |
|
|
|
def huggingface_result_page(paragraph): |
|
if paragraph.strip(): |
|
model_base = pipeline('sentiment-analysis') |
|
|
|
sen_list = paragraph |
|
sen_list = sen_list.split('\n') |
|
sen_list_temp = sen_list[0:] |
|
results = [] |
|
temp_result_dict = [] |
|
|
|
for sen in sen_list_temp: |
|
sen = sen.strip() |
|
|
|
if sen: |
|
cur_result = model_base(sen)[0] |
|
temp_result_dict.append(sen) |
|
results.append(cur_result['label']) |
|
|
|
result = { |
|
'Input': sen_list, 'Sentiment': results |
|
} |
|
print("LENGTH of results ====> ",str(len(results))) |
|
print("LENGTH of sen_list ====> ",str(len(temp_result_dict))) |
|
|
|
return pd.DataFrame(result) |
|
else: |
|
raise gr.Error("Please enter text in inputbox!!!!") |
|
|
|
def save_data_and_sendmail(sen_list,results,result,paragraph): |
|
try: |
|
print("welcome") |
|
ip_address = '' |
|
|
|
ip_address= getIP() |
|
print(ip_address) |
|
location = get_location(ip_address) |
|
print(location) |
|
add_csv = [paragraph,result,ip_address,location] |
|
with open(DATA_FILE, "a") as f: |
|
writer = csv.writer(f) |
|
|
|
writer.writerow(add_csv) |
|
commit_url = repo.push_to_hub() |
|
print("commit data :",commit_url) |
|
|
|
|
|
|
|
|
|
|
|
|
|
url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_sentiment' |
|
myobj = {'para': sen_list,'result':results,'ip_addr':ip_address,"location":location} |
|
x = requests.post(url, json = myobj) |
|
|
|
return "Successfully save data" |
|
|
|
except Exception as e: |
|
print("error") |
|
return "Error while sending mail" + str(e) |
|
|
|
inputs = gr.Textbox(lines=3, label="Paragraph",value=input_para) |
|
outputs = gr.Dataframe(row_count = (3, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Sentiment"],wrap=True) |
|
|
|
demo = gr.Interface( |
|
huggingface_result_page, |
|
inputs, |
|
outputs, |
|
title="Huggingface Sentiment Analysis", |
|
css=".gradio-container {background-color: lightgray}", |
|
article = """<p style='text-align: center;'>Feel free to give us your <a href="https://www.pragnakalp.com/contact/" target="_blank">feedback</a> on this Question Generation using T5 demo.</p> |
|
<p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>""" |
|
) |
|
|
|
|
|
demo.launch() |