|
import gradio as gr |
|
import requests |
|
import tensorflow as tf |
|
import keras_ocr |
|
import cv2 |
|
import os |
|
import numpy as np |
|
import pandas as pd |
|
|
|
from datetime import datetime |
|
import scipy.ndimage.interpolation as inter |
|
import easyocr |
|
from PIL import Image |
|
from paddleocr import PaddleOCR |
|
import socket |
|
|
|
from huggingface_hub import HfApi |
|
import smtplib |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HF_TOKEN1 = os.getenv('HF_TOKEN') |
|
print(type(HF_TOKEN1)) |
|
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN1, 'OCR-image-to-text') |
|
def get_device_ip_address(): |
|
|
|
if os.name == "nt": |
|
result = "Running on Windows" |
|
hostname = socket.gethostname() |
|
result += "\nHostname: " + hostname |
|
host = socket.gethostbyname(hostname) |
|
result += "\nHost-IP-Address:" + host |
|
return result |
|
elif os.name == "posix": |
|
gw = os.popen("ip -4 route show default").read().split() |
|
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) |
|
s.connect((gw[2], 0)) |
|
ipaddr = s.getsockname()[0] |
|
gateway = gw[2] |
|
host = socket.gethostname() |
|
result = "\nIP address:\t\t" + ipaddr + "\r\nHost:\t\t" + host |
|
return result |
|
else: |
|
result = os.name + " not supported yet." |
|
return result |
|
|
|
|
|
|
|
""" |
|
Paddle OCR |
|
""" |
|
def ocr_with_paddle(img): |
|
finaltext = '' |
|
ocr = PaddleOCR(lang='en', use_angle_cls=True) |
|
|
|
result = ocr.ocr(img) |
|
|
|
for i in range(len(result[0])): |
|
text = result[0][i][1][0] |
|
finaltext += ' '+ text |
|
return finaltext |
|
|
|
""" |
|
Keras OCR |
|
""" |
|
def ocr_with_keras(img): |
|
output_text = '' |
|
pipeline=keras_ocr.pipeline.Pipeline() |
|
images=[keras_ocr.tools.read(img)] |
|
predictions=pipeline.recognize(images) |
|
first=predictions[0] |
|
for text,box in first: |
|
output_text += ' '+ text |
|
return output_text |
|
|
|
""" |
|
easy OCR |
|
""" |
|
|
|
def get_grayscale(image): |
|
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
def thresholding(src): |
|
return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1] |
|
def ocr_with_easy(img): |
|
gray_scale_image=get_grayscale(img) |
|
thresholding(gray_scale_image) |
|
cv2.imwrite('image.png',gray_scale_image) |
|
reader = easyocr.Reader(['th','en']) |
|
bounds = reader.readtext('image.png',paragraph="False",detail = 0) |
|
bounds = ''.join(bounds) |
|
return bounds |
|
""" |
|
Generate OCR |
|
""" |
|
def generate_ocr(Method,img): |
|
try: |
|
text_output = '' |
|
|
|
print("Method___________________",Method) |
|
if Method == 'EasyOCR': |
|
text_output = ocr_with_easy(img) |
|
if Method == 'KerasOCR': |
|
text_output = ocr_with_keras(img) |
|
if Method == 'PaddleOCR': |
|
text_output = ocr_with_paddle(img) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return text_output |
|
|
|
except Exception as e: |
|
print("Error in ocr generation ==>",e) |
|
text_output = "Something went wrong" |
|
return text_output |
|
""" |
|
Save generated details |
|
""" |
|
def save_details(Method,text_output,img): |
|
|
|
hostname = get_device_ip_address() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return send_user_email() |
|
|
|
|
|
""" |
|
Create user interface for OCR demo |
|
""" |
|
|
|
image = gr.Image(shape=(224, 224),elem_id="img_div") |
|
method = gr.Radio(["EasyOCR", "KerasOCR", "PaddleOCR"],value="PaddleOCR",elem_id="radio_div") |
|
output = gr.Textbox(label="Output") |
|
|
|
demo = gr.Interface( |
|
generate_ocr, |
|
[method,image], |
|
output, |
|
title="Optical Character Recognition", |
|
description="Try OCR with different methods", |
|
theme="darkpeach", |
|
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", |
|
allow_flagging = "manual", |
|
flagging_dir = "flagged", |
|
flagging_callback=hf_writer |
|
) |
|
demo.launch(enable_queue = False) |