|
import gradio as gr |
|
import requests |
|
import tensorflow as tf |
|
import keras_ocr |
|
import cv2 |
|
import os |
|
import numpy as np |
|
import pandas as pd |
|
from datetime import datetime |
|
import scipy.ndimage.interpolation as inter |
|
import easyocr |
|
from PIL import Image |
|
from paddleocr import PaddleOCR |
|
import socket |
|
from send_email_user import send_user_email |
|
|
|
|
|
|
|
|
|
def get_device_ip_address(): |
|
|
|
if os.name == "nt": |
|
result = "Running on Windows" |
|
hostname = socket.gethostname() |
|
result += "\nHostname: " + hostname |
|
host = socket.gethostbyname(hostname) |
|
result += "\nHost-IP-Address:" + host |
|
return result |
|
elif os.name == "posix": |
|
gw = os.popen("ip -4 route show default").read().split() |
|
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) |
|
s.connect((gw[2], 0)) |
|
ipaddr = s.getsockname()[0] |
|
gateway = gw[2] |
|
host = socket.gethostname() |
|
result = "\nIP address:\t\t" + ipaddr + "\r\nHost:\t\t" + host |
|
return result |
|
else: |
|
result = os.name + " not supported yet." |
|
return result |
|
|
|
|
|
|
|
""" |
|
Paddle OCR |
|
""" |
|
def ocr_with_paddle(img): |
|
finaltext = '' |
|
ocr = PaddleOCR(lang='en', use_angle_cls=True) |
|
|
|
result = ocr.ocr(img) |
|
|
|
for i in range(len(result[0])): |
|
text = result[0][i][1][0] |
|
finaltext += ' '+ text |
|
return finaltext |
|
|
|
""" |
|
Keras OCR |
|
""" |
|
def ocr_with_keras(img): |
|
output_text = '' |
|
pipeline=keras_ocr.pipeline.Pipeline() |
|
images=[keras_ocr.tools.read(img)] |
|
predictions=pipeline.recognize(images) |
|
first=predictions[0] |
|
for text,box in first: |
|
output_text += ' '+ text |
|
return output_text |
|
|
|
""" |
|
easy OCR |
|
""" |
|
|
|
def get_grayscale(image): |
|
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
def thresholding(src): |
|
return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1] |
|
|
|
def ocr_with_easy(img): |
|
gray_scale_image=get_grayscale(img) |
|
thresholding(gray_scale_image) |
|
cv2.imwrite('image.png',gray_scale_image) |
|
reader = easyocr.Reader(['th','en']) |
|
bounds = reader.readtext('image.png',paragraph="False",detail = 0) |
|
bounds = ''.join(bounds) |
|
return bounds |
|
""" |
|
Generate OCR |
|
""" |
|
def generate_ocr(Method,img): |
|
try: |
|
text_output = '' |
|
|
|
print("Method___________________",Method) |
|
if Method == 'EasyOCR': |
|
text_output = ocr_with_easy(img) |
|
if Method == 'KerasOCR': |
|
text_output = ocr_with_keras(img) |
|
if Method == 'PaddleOCR': |
|
text_output = ocr_with_paddle(img) |
|
save_details(Method,text_output,img) |
|
|
|
return text_output |
|
|
|
|
|
|
|
|
|
except Exception as e: |
|
print("Error in ocr generation ==>",e) |
|
text_output = "Something went wrong" |
|
return text_output |
|
""" |
|
Save generated details |
|
""" |
|
def save_details(Method,text_output,img): |
|
method = [] |
|
img_path = [] |
|
text = [] |
|
input_img = '' |
|
hostname = '' |
|
picture_path = "image.jpg" |
|
curr_datetime = datetime.now().strftime('%Y-%m-%d %H-%M-%S') |
|
if text_output: |
|
splitted_path = os.path.splitext(picture_path) |
|
modified_picture_path = splitted_path[0] + curr_datetime + splitted_path[1] |
|
cv2.imwrite(modified_picture_path, img) |
|
input_img = modified_picture_path |
|
try: |
|
df = pd.read_csv("AllDetails.csv") |
|
df2 = {'method': Method, 'input_img': input_img, 'generated_text': text_output} |
|
df = df.append(df2, ignore_index = True) |
|
df.to_csv("AllDetails.csv", index=False) |
|
except: |
|
method.append(Method) |
|
img_path.append(input_img) |
|
text.append(text_output) |
|
dict = {'method': method, 'input_img': img_path, 'generated_text': text} |
|
df = pd.DataFrame(dict,index=None) |
|
df.to_csv("AllDetails.csv") |
|
|
|
hostname = get_device_ip_address() |
|
return send_user_email(input_img,hostname,text_output,Method) |
|
|
|
|
|
""" |
|
Create user interface for OCR demo |
|
""" |
|
|
|
image = gr.Image(shape=(224, 224),elem_id="img_div") |
|
method = gr.Radio(["EasyOCR", "KerasOCR", "PaddleOCR"],elem_id="radio_div") |
|
output = gr.Textbox(label="Output") |
|
|
|
demo = gr.Interface( |
|
generate_ocr, |
|
[method,image], |
|
output, |
|
title="Optical Character Recognition", |
|
description="Try OCR with different methods", |
|
theme="darkpeach", |
|
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}" |
|
) |
|
|
|
demo.launch(enable_queue = False) |