File size: 7,632 Bytes
1569310
 
 
 
 
 
3878fb6
1569310
2d7b88a
c82795d
 
1569310
 
 
51e91cb
1569310
 
 
3c29c5e
32b4d4b
3c29c5e
03ceac8
a1c4f2e
51e91cb
 
 
 
 
8308970
51e91cb
 
 
 
 
 
 
 
 
c506677
51e91cb
 
eec34b9
51e91cb
 
 
 
 
 
 
1569310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650e5f
 
1569310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f50644
1569310
 
618bbc5
1569310
 
 
 
03ceac8
00bb0bd
e5a831d
00bb0bd
7875a5f
4f50644
7ee9d4d
51b3915
 
 
4f50644
eec34b9
51b3915
9882588
 
ac6f34c
9882588
 
51b3915
 
 
 
 
f6127e6
 
 
 
51e91cb
f6127e6
 
 
 
51e91cb
f6127e6
 
 
 
 
 
 
f10f992
6c40d37
1569310
 
 
3c29c5e
1569310
 
 
e9dff8c
28f43ce
ba52c7e
4d21d95
ecdecda
 
 
 
b9ebda9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569310
ba52c7e
933fcc0
ecdecda
1569310
 
 
 
 
 
19c148f
1569310
 
 
 
 
 
 
03ceac8
8439022
51e91cb
 
 
1569310
55b140e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import requests
import tensorflow as tf
import keras_ocr
import cv2
import os
import csv
import numpy as np
import pandas as pd
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime
import scipy.ndimage.interpolation as inter
import easyocr
from datasets import load_dataset
from PIL import Image
from paddleocr import PaddleOCR
import socket
# from send_email_user import send_user_email
from huggingface_hub import HfApi
import smtplib

HF_TOKEN = os.environ.get("HF_TOKEN")
# mydataset_name = "pragnakalp/OCR-img-to-text"
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$",type(mydataset_name))
# hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN,mydataset_name)


DATASET_REPO_URL = "https://huggingface.co/datasets/pragnakalp/OCR-img-to-text"
DATA_FILENAME = "ocr_data.csv"
DATA_FILE = os.path.join("ocr_data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_REPO_ID = "pragnakalp/OCR-img-to-text"
print("is none?", HF_TOKEN is None)
try:
    hf_hub_download(
        repo_id=DATASET_REPO_ID,
        filename=DATA_FILENAME,
        cache_dir=DATA_DIRNAME,
        force_filename=DATA_FILENAME
    )
    
except:
    print("file not found")

repo = Repository(
    local_dir="ocr_data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

def get_device_ip_address():

    if os.name == "nt":
        result = "Running on Windows"
        hostname = socket.gethostname()
        result += "\nHostname:  " + hostname
        host = socket.gethostbyname(hostname)
        result += "\nHost-IP-Address:" + host
        return result
    elif os.name == "posix":
        gw = os.popen("ip -4 route show default").read().split()
        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
        s.connect((gw[2], 0))
        ipaddr = s.getsockname()[0]
        gateway = gw[2]
        host = socket.gethostname()
        result = "\nIP address:\t\t" + ipaddr  + "\r\nHost:\t\t" + host
        return result
    else:
        result = os.name + " not supported yet."
        return result

            
"""
Paddle OCR
"""
def ocr_with_paddle(img):
    finaltext = ''
    ocr = PaddleOCR(lang='en', use_angle_cls=True)
    # img_path = 'exp.jpeg'
    result = ocr.ocr(img)
    
    for i in range(len(result[0])):
        text = result[0][i][1][0]
        finaltext += ' '+ text
    return finaltext

"""
Keras OCR
"""
def ocr_with_keras(img):
    output_text = ''
    pipeline=keras_ocr.pipeline.Pipeline()
    images=[keras_ocr.tools.read(img)]
    predictions=pipeline.recognize(images)
    first=predictions[0]
    for text,box in first:
        output_text += ' '+ text
    return output_text

"""
easy OCR
"""
# gray scale image
def get_grayscale(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Thresholding or Binarization
def thresholding(src):
    return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1]
def ocr_with_easy(img):
    gray_scale_image=get_grayscale(img)
    thresholding(gray_scale_image)
    cv2.imwrite('image.png',gray_scale_image)
    reader = easyocr.Reader(['th','en'])
    bounds = reader.readtext('image.png',paragraph="False",detail = 0)
    bounds = ''.join(bounds)
    return bounds
"""
Generate OCR
"""
def generate_ocr(Method,img):
    try:
        text_output = ''
        add_csv = []
        print("Method___________________",Method)
        if Method == 'EasyOCR':
            text_output = ocr_with_easy(img)
        if Method == 'KerasOCR':
            text_output = ocr_with_keras(img)
        if Method == 'PaddleOCR':
            text_output = ocr_with_paddle(img)

        new_data=img.reshape(img.shape)
        # print("^^^^^^^^^^^^^^^",new_data)
        imge = Image.fromarray(new_data.astype(np.uint8),'RGB')
        print(imge.filename)
        add_csv = [Method,imge,text_output]
        print("^^^^^",type(imge))
        with open(DATA_FILE, "a") as f:
            writer = csv.writer(f)
            # write the data
            writer.writerow(add_csv)
            commit_url = repo.push_to_hub()
            print(commit_url)
        try:
            dataset = load_dataset("pragnakalp/OCR-img-to-text", data_files= "ocr_data.csv", streaming=True)
            print(dataset)
        except Exception as e: 
            print("error in loading data",e)
        # with open(DATA_FILE, "a") as csvfile:
        #     writer = csv.Writer(csvfile)
        #     writer.writerow(add_csv)
        # commit_url = repo.push_to_hub()
        # print(commit_url)
        # save_details(Method,text_output,img)
        # sender="[email protected]"
        # password="httscgatatbbxxur"
        # reciever="[email protected]"

        # s = smtplib.SMTP('smtp.gmail.com', 587)
        # s.starttls()
        # s.ehlo()
        # s.login(sender,password)

        # message = """Subject : Appointment Booking\n\n
        #         Hello,
        # Your OCR generated successfully"""
        # s.sendmail(sender, reciever, message)
        # s.quit()
        # mailsend=1
        # print("Send mail successfully")
        return text_output
    
    except Exception as e:
        print("Error in ocr generation ==>",e)
        text_output = "Something went wrong"
    return text_output
"""
Save generated details
"""
def save_details(Method,text_output,img):
    # print("//////////")
    hostname = get_device_ip_address()
    # url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_image_to_text'
    # url = 'http://pragnakalpdev35.pythonanywhere.com/HF_space_image_to_text'
    # myobj = {'Method': Method,'text_output':text_output,'img':img.tolist(),'hostname':hostname}
    # x = requests.post(url, json = myobj)
    
#     method = []
#     img_path = []
#     text = []
#     input_img = ''
#     hostname = ''
#     picture_path = "image.jpg"    
#     curr_datetime = datetime.now().strftime('%Y-%m-%d %H-%M-%S')
#     if text_output:
#         splitted_path = os.path.splitext(picture_path)
#         modified_picture_path = splitted_path[0] + curr_datetime + splitted_path[1]
#         cv2.imwrite("myimage.jpg", img)
#         with open('savedata.txt', 'w') as f:
#             print("write test")
#             f.write("testdata")
#         print("write Successfully")
#         # img = Image.open(r"/home/user/app/")
#         # img.save(modified_picture_path)
#         input_img = modified_picture_path
#         try:
#             df = pd.read_csv("AllDetails.csv")
#             df2 = {'method': Method, 'input_img': input_img, 'generated_text': text_output}
#             df = df.append(df2, ignore_index = True)
#             df.to_csv("AllDetails.csv", index=False)
#         except:
#             method.append(Method)
#             img_path.append(input_img)
#             text.append(text_output)
#             dict = {'method': method, 'input_img': img_path, 'generated_text': text}
#             df = pd.DataFrame(dict,index=None)
#             df.to_csv("AllDetails.csv")

        
    return send_user_email()
    # return x

"""
Create user interface for OCR demo
"""

image = gr.Image(shape=(224, 224),elem_id="img_div")
method = gr.Radio(["EasyOCR", "KerasOCR", "PaddleOCR"],value="PaddleOCR",elem_id="radio_div")
output = gr.Textbox(label="Output")

demo = gr.Interface(
    generate_ocr,
    [method,image],
    output,
    title="Optical Character Recognition",
    description="Try OCR with different methods",
    css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}",
    allow_flagging = "manual"
 #    flagging_dir = "flagged",
	# flagging_callback=hf_writer
)
demo.launch(enable_queue = False)