Spaces:
Running
Running
import gradio as gr | |
import requests | |
import tensorflow as tf | |
import keras_ocr | |
import cv2 | |
import os | |
import csv | |
import numpy as np | |
import pandas as pd | |
import huggingface_hub | |
from huggingface_hub import Repository | |
from datetime import datetime | |
import scipy.ndimage.interpolation as inter | |
import easyocr | |
import datasets | |
from datasets import load_dataset, Image, Features, Array3D | |
from PIL import Image | |
from paddleocr import PaddleOCR | |
import socket | |
# from send_email_user import send_user_email | |
from huggingface_hub import HfApi | |
import smtplib | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# mydataset_name = "pragnakalp/OCR-img-to-text" | |
# print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$",type(mydataset_name)) | |
# hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN,mydataset_name) | |
DATASET_REPO_URL = "https://huggingface.co/datasets/pragnakalp/OCR-img-to-text" | |
DATA_FILENAME = "ocr_data.csv" | |
DATA_FILE = os.path.join("ocr_data", DATA_FILENAME) | |
# DATA_FILENAME2 = "image" | |
# DATA_FILE2 = os.path.join("ocr_data",DATA_FILENAME2) | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
DATASET_REPO_ID = "pragnakalp/OCR-img-to-text" | |
print("is none?", HF_TOKEN is None) | |
try: | |
hf_hub_download( | |
repo_id=DATASET_REPO_ID, | |
filename=DATA_FILENAME, | |
cache_dir=DATA_DIRNAME, | |
force_filename=DATA_FILENAME | |
) | |
except: | |
print("file not found") | |
repo = Repository( | |
local_dir="ocr_data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN | |
) | |
def get_device_ip_address(): | |
if os.name == "nt": | |
result = "Running on Windows" | |
hostname = socket.gethostname() | |
result += "\nHostname: " + hostname | |
host = socket.gethostbyname(hostname) | |
result += "\nHost-IP-Address:" + host | |
return result | |
elif os.name == "posix": | |
gw = os.popen("ip -4 route show default").read().split() | |
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) | |
s.connect((gw[2], 0)) | |
ipaddr = s.getsockname()[0] | |
gateway = gw[2] | |
host = socket.gethostname() | |
result = "\nIP address:\t\t" + ipaddr + "\r\nHost:\t\t" + host | |
return result | |
else: | |
result = os.name + " not supported yet." | |
return result | |
""" | |
Paddle OCR | |
""" | |
def ocr_with_paddle(img): | |
finaltext = '' | |
ocr = PaddleOCR(lang='en', use_angle_cls=True) | |
# img_path = 'exp.jpeg' | |
result = ocr.ocr(img) | |
for i in range(len(result[0])): | |
text = result[0][i][1][0] | |
finaltext += ' '+ text | |
return finaltext | |
""" | |
Keras OCR | |
""" | |
def ocr_with_keras(img): | |
output_text = '' | |
pipeline=keras_ocr.pipeline.Pipeline() | |
images=[keras_ocr.tools.read(img)] | |
predictions=pipeline.recognize(images) | |
first=predictions[0] | |
for text,box in first: | |
output_text += ' '+ text | |
return output_text | |
""" | |
easy OCR | |
""" | |
# gray scale image | |
def get_grayscale(image): | |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# Thresholding or Binarization | |
def thresholding(src): | |
return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1] | |
def ocr_with_easy(img): | |
gray_scale_image=get_grayscale(img) | |
thresholding(gray_scale_image) | |
cv2.imwrite('image.png',gray_scale_image) | |
reader = easyocr.Reader(['th','en']) | |
bounds = reader.readtext('image.png',paragraph="False",detail = 0) | |
bounds = ''.join(bounds) | |
return bounds | |
# def store_single_disk(image, image_id, label): | |
# """ Stores a single image as a .png file on disk. | |
# Parameters: | |
# --------------- | |
# image image array, (32, 32, 3) to be stored | |
# image_id integer unique ID for image | |
# label image label | |
# """ | |
# Image.fromarray(image).save(disk_dir / f"{image_id}.png") | |
# with open(disk_dir / f"{image_id}.csv", "wt") as csvfile: | |
# writer = csv.writer( | |
# csvfile, delimiter=" ", quotechar="|", quoting=csv.QUOTE_MINIMAL | |
# ) | |
# writer.writerow([label]) | |
""" | |
Generate OCR | |
""" | |
def generate_ocr(Method,img): | |
try: | |
text_output = '' | |
add_csv = [] | |
image_id = 1 | |
print("Method___________________",Method) | |
if Method == 'EasyOCR': | |
text_output = ocr_with_easy(img) | |
if Method == 'KerasOCR': | |
text_output = ocr_with_keras(img) | |
if Method == 'PaddleOCR': | |
text_output = ocr_with_paddle(img) | |
new_data=img.reshape(img.shape) | |
imge = Image.fromarray(new_data.astype(np.uint8),'RGB') | |
add_csv = [Method,imge,text_output] | |
feature = datasets.Image(decode=False) | |
new_image = {'image': feature.encode_example(imge)} | |
dataset['test'] = dataset['test'].add_item(new_image) | |
with open(DATA_FILE, "a") as f: | |
writer = csv.writer(f) | |
# write the data | |
writer.writerow(add_csv) | |
commit_url = repo.push_to_hub() | |
print(commit_url) | |
# print("^^%%",Image.fromarray(img).save(DATA_FILE2 +"/"+ f"{image_id}.png")) | |
# with open(DATA_FILE2, "wt") as csvfile: | |
# writer = csv.writer( | |
# csvfile, delimiter=" ", quotechar="|", quoting=csv.QUOTE_MINIMAL | |
# ) | |
# writer.writerow(['0']) | |
# try: | |
# dataset = load_dataset("pragnakalp/OCR-img-to-text", streaming=True) | |
# print(dataset.features) | |
# except Exception as e: | |
# print("error in loading data",e) | |
# with open(DATA_FILE, "a") as csvfile: | |
# writer = csv.Writer(csvfile) | |
# writer.writerow(add_csv) | |
# commit_url = repo.push_to_hub() | |
# print(commit_url) | |
# save_details(Method,text_output,img) | |
# sender="[email protected]" | |
# password="httscgatatbbxxur" | |
# reciever="[email protected]" | |
# s = smtplib.SMTP('smtp.gmail.com', 587) | |
# s.starttls() | |
# s.ehlo() | |
# s.login(sender,password) | |
# message = """Subject : Appointment Booking\n\n | |
# Hello, | |
# Your OCR generated successfully""" | |
# s.sendmail(sender, reciever, message) | |
# s.quit() | |
# mailsend=1 | |
# print("Send mail successfully") | |
return text_output | |
except Exception as e: | |
print("Error in ocr generation ==>",e) | |
text_output = "Something went wrong" | |
return text_output | |
""" | |
Save generated details | |
""" | |
def save_details(Method,text_output,img): | |
# print("//////////") | |
hostname = get_device_ip_address() | |
# url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_image_to_text' | |
# url = 'http://pragnakalpdev35.pythonanywhere.com/HF_space_image_to_text' | |
# myobj = {'Method': Method,'text_output':text_output,'img':img.tolist(),'hostname':hostname} | |
# x = requests.post(url, json = myobj) | |
# method = [] | |
# img_path = [] | |
# text = [] | |
# input_img = '' | |
# hostname = '' | |
# picture_path = "image.jpg" | |
# curr_datetime = datetime.now().strftime('%Y-%m-%d %H-%M-%S') | |
# if text_output: | |
# splitted_path = os.path.splitext(picture_path) | |
# modified_picture_path = splitted_path[0] + curr_datetime + splitted_path[1] | |
# cv2.imwrite("myimage.jpg", img) | |
# with open('savedata.txt', 'w') as f: | |
# print("write test") | |
# f.write("testdata") | |
# print("write Successfully") | |
# # img = Image.open(r"/home/user/app/") | |
# # img.save(modified_picture_path) | |
# input_img = modified_picture_path | |
# try: | |
# df = pd.read_csv("AllDetails.csv") | |
# df2 = {'method': Method, 'input_img': input_img, 'generated_text': text_output} | |
# df = df.append(df2, ignore_index = True) | |
# df.to_csv("AllDetails.csv", index=False) | |
# except: | |
# method.append(Method) | |
# img_path.append(input_img) | |
# text.append(text_output) | |
# dict = {'method': method, 'input_img': img_path, 'generated_text': text} | |
# df = pd.DataFrame(dict,index=None) | |
# df.to_csv("AllDetails.csv") | |
return send_user_email() | |
# return x | |
""" | |
Create user interface for OCR demo | |
""" | |
image = gr.Image(shape=(224, 224),elem_id="img_div") | |
method = gr.Radio(["EasyOCR", "KerasOCR", "PaddleOCR"],value="PaddleOCR",elem_id="radio_div") | |
output = gr.Textbox(label="Output") | |
demo = gr.Interface( | |
generate_ocr, | |
[method,image], | |
output, | |
title="Optical Character Recognition", | |
description="Try OCR with different methods", | |
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", | |
allow_flagging = "manual" | |
# flagging_dir = "flagged", | |
# flagging_callback=hf_writer | |
) | |
demo.launch(enable_queue = False) |