File size: 6,776 Bytes
2a5b9f4 233fac4 3e63657 2274456 2a5b9f4 d512dba 9e56dd0 2a5b9f4 207d8a5 662387f 207d8a5 9c0d256 207d8a5 b0b9ac1 207d8a5 7de25cf 207d8a5 2a5b9f4 b4ad87b 662387f b4ad87b 662387f b4ad87b 662387f 2a5b9f4 1bff3b0 7de25cf 1bff3b0 97eaf7f 1bff3b0 1f43064 1bff3b0 e5e3391 1bff3b0 b5b2bc9 662387f 1bff3b0 662387f b5b2bc9 662387f 1bff3b0 1f43064 207d8a5 1bff3b0 2a5b9f4 7de25cf 2a5b9f4 662387f 421e871 662387f 421e871 2a5b9f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
import requests
import os
import numpy as np
import pandas as pd
import json
import socket
import huggingface_hub
from huggingface_hub import Repository
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
from questiongenerator import QuestionGenerator
import csv
qg = QuestionGenerator()
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "question_generation_T5_dataset"
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
DATA_FILENAME = "que_gen_logs.csv"
DATA_FILE = os.path.join("que_gen_logs", DATA_FILENAME)
DATASET_REPO_ID = "pragnakalp/question_generation_T5_dataset"
print("is none?", HF_TOKEN is None)
article_value = """Google was founded in 1998 by Larry Page and Sergey Brin while they were Ph.D. students at Stanford University in California. Together they own about 14 percent of its shares and control 56 percent of the stockholder voting power through supervoting stock. They incorporated Google as a privately held company on September 4, 1998. An initial public offering (IPO) took place on August 19, 2004, and Google moved to its headquarters in Mountain View, California, nicknamed the Googleplex. In August 2015, Google announced plans to reorganize its various interests as a conglomerate called Alphabet Inc. Google is Alphabet's leading subsidiary and will continue to be the umbrella company for Alphabet's Internet interests. Sundar Pichai was appointed CEO of Google, replacing Larry Page who became the CEO of Alphabet."""
# REPOSITORY_DIR = "data"
# LOCAL_DIR = 'data_local'
# os.makedirs(LOCAL_DIR,exist_ok=True)
try:
hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=DATA_FILENAME,
cache_dir=DATA_DIRNAME,
force_filename=DATA_FILENAME
)
except:
print("file not found")
repo = Repository(
local_dir="que_gen_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
# def get_device_ip_address():
# if os.name == "nt":
# result = "Running on Windows"
# hostname = socket.gethostname()
# ip_address = socket.gethostbyname(hostname)
# return ip_address
# elif os.name == "posix":
# gw = os.popen("ip -4 route show default").read().split()
# s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# s.connect((gw[2], 0))
# ip_address = s.getsockname()[0]
# gateway = gw[2]
# host = socket.gethostname()
# print("----->",ip_address)
# return ip_address
# else:
# result['id'] = os.name + " not supported yet."
# print(result)
# return result
def getIP():
ip_address = ''
try:
d = str(urlopen('http://checkip.dyndns.com/')
.read())
return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1)
except Exception as e:
print("Error while getting IP address -->",e)
return ip_address
def get_location(ip_addr):
location = {}
try:
ip=ip_addr
req_data={
"ip":ip,
"token":"pkml123"
}
url = "https://demos.pragnakalp.com/get-ip-location"
# req_data=json.dumps(req_data)
# print("req_data",req_data)
headers = {'Content-Type': 'application/json'}
response = requests.request("POST", url, headers=headers, data=json.dumps(req_data))
response = response.json()
print("response======>>",response)
return response
except Exception as e:
print("Error while getting location -->",e)
return location
def generate_questions(article,num_que):
result = ''
try:
if num_que == None or num_que == '':
num_que = 3
else:
num_que = num_que
generated_questions_list = qg.generate(article, num_questions=int(num_que))
summarized_data = {
"generated_questions" : generated_questions_list
}
generated_questions = summarized_data.get("generated_questions",'')
for q in generated_questions:
print(q)
result = result + q + '\n'
save_data_and_sendmail(article,generated_questions,num_que)
return result
except Exception as e:
return "Error while generating question -->" + str(e)
"""
Save generated details
"""
def save_data_and_sendmail(article,generated_questions,num_que):
try:
ip_address= getIP()
print(ip_address)
location = get_location(ip_address)
print(location)
add_csv = [article, generated_questions, num_que, ip_address,location]
print("data^^^^^",add_csv)
with open(DATA_FILE, "a") as f:
writer = csv.writer(f)
# write the data
writer.writerow(add_csv)
commit_url = repo.push_to_hub()
print("commit data :",commit_url)
url = 'https://pragnakalpdev35.pythonanywhere.com/HF_space_que_gen'
# url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator'
myobj = {'article': article,'total_que': num_que,'gen_que':generated_questions,'ip_addr':ip_address,'loc':location}
x = requests.post(url, json = myobj)
print("myobj^^^^^",myobj)
# with open(DATA_FILE, "r") as file:
# data = json.load(file)
# data.append(entry)
# with open(DATA_FILE, "w") as file:
# json.dump(data, file)
# commit_url = repo.push_to_hub()
except Exception as e:
return "Error while sending mail" + str(e)
return "Successfully save data"
## design 1
inputs=gr.Textbox(value=article_value, lines=5, label="Article/Text",elem_id="inp_div")
total_que = gr.Textbox(label="Number of Question want to generate",elem_id="inp_div")
outputs=gr.Textbox(lines=5, label="Generated Questions",elem_id="inp_div")
demo = gr.Interface(
generate_questions,
[inputs,total_que],
outputs,
title="Question Generation using T5",
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #7FB3D5;}",
article="""Feel free to give us your [feedback](https://www.pragnakalp.com/contact/) and contact us at [[email protected]]("mailto:[email protected]")
if you want to have your own Questions-Generation using T5 model. We are just one click away. And don't forget to check out more interesting
[NLP services](https://www.pragnakalp.com/services/natural-language-processing-services/) we are offering.
<p style='text-align: center;'>Developed by :[ Pragnakalp Techlabs](https://www.pragnakalp.com)</p>"""
)
demo.launch(enable_queue = False)
|