Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import math | |
import numpy as np | |
import torch | |
import spacy | |
import re | |
import random | |
import json | |
import en_core_web_sm | |
from string import punctuation | |
#from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config | |
#from transformers import BertTokenizer, BertForSequenceClassification | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification | |
class QuestionGenerator(): | |
def __init__(self, model_dir=None): | |
QG_PRETRAINED = 'iarfmoose/t5-base-question-generator' | |
self.ANSWER_TOKEN = '<answer>' | |
self.CONTEXT_TOKEN = '<context>' | |
self.SEQ_LENGTH = 512 | |
self.device = torch.device('cpu') | |
# self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.qg_tokenizer = AutoTokenizer.from_pretrained(QG_PRETRAINED) | |
self.qg_model = AutoModelForSeq2SeqLM.from_pretrained(QG_PRETRAINED) | |
self.qg_model.to(self.device) | |
self.qa_evaluator = QAEvaluator(model_dir) | |
def generate(self, article, use_evaluator=True, num_questions=None, answer_style='all'): | |
print("Generating questions...\n") | |
qg_inputs, qg_answers = self.generate_qg_inputs(article, answer_style) | |
print("qg_inputs, qg_answers=>",qg_inputs, qg_answers) | |
generated_questions = self.generate_questions_from_inputs(qg_inputs,num_questions) | |
print("generated_questions(generate)=>",generated_questions) | |
return generated_questions | |
message = "{} questions doesn't match {} answers".format( | |
len(generated_questions), | |
len(qg_answers)) | |
assert len(generated_questions) == len(qg_answers), message | |
if use_evaluator: | |
print("Evaluating QA pairs...\n") | |
encoded_qa_pairs = self.qa_evaluator.encode_qa_pairs(generated_questions, qg_answers) | |
scores = self.qa_evaluator.get_scores(encoded_qa_pairs) | |
if num_questions: | |
qa_list = self._get_ranked_qa_pairs(generated_questions, qg_answers, scores, num_questions) | |
else: | |
qa_list = self._get_ranked_qa_pairs(generated_questions, qg_answers, scores) | |
else: | |
print("Skipping evaluation step.\n") | |
qa_list = self._get_all_qa_pairs(generated_questions, qg_answers) | |
return qa_list | |
def generate_qg_inputs(self, text, answer_style): | |
VALID_ANSWER_STYLES = ['all', 'sentences', 'multiple_choice'] | |
if answer_style not in VALID_ANSWER_STYLES: | |
raise ValueError( | |
"Invalid answer style {}. Please choose from {}".format( | |
answer_style, | |
VALID_ANSWER_STYLES | |
) | |
) | |
inputs = [] | |
answers = [] | |
if answer_style == 'sentences' or answer_style == 'all': | |
segments = self._split_into_segments(text) | |
for segment in segments: | |
sentences = self._split_text(segment) | |
prepped_inputs, prepped_answers = self._prepare_qg_inputs(sentences, segment) | |
inputs.extend(prepped_inputs) | |
answers.extend(prepped_answers) | |
if answer_style == 'multiple_choice' or answer_style == 'all': | |
sentences = self._split_text(text) | |
prepped_inputs, prepped_answers = self._prepare_qg_inputs_MC(sentences) | |
inputs.extend(prepped_inputs) | |
answers.extend(prepped_answers) | |
return inputs, answers | |
def generate_questions_from_inputs(self, qg_inputs,num_questions): | |
generated_questions = [] | |
count = 0 | |
print("num que => ", num_questions) | |
for qg_input in qg_inputs: | |
if count < int(num_questions): | |
question = self._generate_question(qg_input) | |
question = question.strip() #remove trailing spaces | |
question = question.strip(punctuation) #remove trailing questionmarks | |
question += "?" #add one ? | |
if question not in generated_questions: | |
generated_questions.append(question) | |
print("question ===> ",question) | |
count += 1 | |
else: | |
return generated_questions | |
return generated_questions # | |
def _split_text(self, text): | |
MAX_SENTENCE_LEN = 128 | |
sentences = re.findall('.*?[.!\?]', text) | |
cut_sentences = [] | |
for sentence in sentences: | |
if len(sentence) > MAX_SENTENCE_LEN: | |
cut_sentences.extend(re.split('[,;:)]', sentence)) | |
# temporary solution to remove useless post-quote sentence fragments | |
cut_sentences = [s for s in sentences if len(s.split(" ")) > 5] | |
sentences = sentences + cut_sentences | |
return list(set([s.strip(" ") for s in sentences])) | |
def _split_into_segments(self, text): | |
MAX_TOKENS = 490 | |
paragraphs = text.split('\n') | |
tokenized_paragraphs = [self.qg_tokenizer(p)['input_ids'] for p in paragraphs if len(p) > 0] | |
segments = [] | |
while len(tokenized_paragraphs) > 0: | |
segment = [] | |
while len(segment) < MAX_TOKENS and len(tokenized_paragraphs) > 0: | |
paragraph = tokenized_paragraphs.pop(0) | |
segment.extend(paragraph) | |
segments.append(segment) | |
return [self.qg_tokenizer.decode(s) for s in segments] | |
def _prepare_qg_inputs(self, sentences, text): | |
inputs = [] | |
answers = [] | |
for sentence in sentences: | |
qg_input = '{} {} {} {}'.format( | |
self.ANSWER_TOKEN, | |
sentence, | |
self.CONTEXT_TOKEN, | |
text | |
) | |
inputs.append(qg_input) | |
answers.append(sentence) | |
return inputs, answers | |
def _prepare_qg_inputs_MC(self, sentences): | |
spacy_nlp = en_core_web_sm.load() | |
docs = list(spacy_nlp.pipe(sentences, disable=['parser'])) | |
inputs_from_text = [] | |
answers_from_text = [] | |
for i in range(len(sentences)): | |
entities = docs[i].ents | |
if entities: | |
for entity in entities: | |
qg_input = '{} {} {} {}'.format( | |
self.ANSWER_TOKEN, | |
entity, | |
self.CONTEXT_TOKEN, | |
sentences[i] | |
) | |
answers = self._get_MC_answers(entity, docs) | |
inputs_from_text.append(qg_input) | |
answers_from_text.append(answers) | |
return inputs_from_text, answers_from_text | |
def _get_MC_answers(self, correct_answer, docs): | |
entities = [] | |
for doc in docs: | |
entities.extend([{'text': e.text, 'label_': e.label_} for e in doc.ents]) | |
# remove duplicate elements | |
entities_json = [json.dumps(kv) for kv in entities] | |
pool = set(entities_json) | |
num_choices = min(4, len(pool)) - 1 # -1 because we already have the correct answer | |
# add the correct answer | |
final_choices = [] | |
correct_label = correct_answer.label_ | |
final_choices.append({'answer': correct_answer.text, 'correct': True}) | |
pool.remove(json.dumps({'text': correct_answer.text, 'label_': correct_answer.label_})) | |
# find answers with the same NER label | |
matches = [e for e in pool if correct_label in e] | |
# if we don't have enough then add some other random answers | |
if len(matches) < num_choices: | |
choices = matches | |
pool = pool.difference(set(choices)) | |
choices.extend(random.sample(pool, num_choices - len(choices))) | |
else: | |
choices = random.sample(matches, num_choices) | |
choices = [json.loads(s) for s in choices] | |
for choice in choices: | |
final_choices.append({'answer': choice['text'], 'correct': False}) | |
random.shuffle(final_choices) | |
return final_choices | |
def _generate_question(self, qg_input): | |
self.qg_model.eval() | |
encoded_input = self._encode_qg_input(qg_input) | |
with torch.no_grad(): | |
output = self.qg_model.generate(input_ids=encoded_input['input_ids']) | |
return self.qg_tokenizer.decode(output[0]) | |
def _encode_qg_input(self, qg_input): | |
return self.qg_tokenizer( | |
qg_input, | |
pad_to_max_length=True, | |
max_length=self.SEQ_LENGTH, | |
truncation=True, | |
return_tensors="pt" | |
).to(self.device) | |
def _get_ranked_qa_pairs(self, generated_questions, qg_answers, scores, num_questions=10): | |
if num_questions > len(scores): | |
num_questions = len(scores) | |
print("\nWas only able to generate {} questions. For more questions, please input a longer text.".format(num_questions)) | |
qa_list = [] | |
for i in range(num_questions): | |
index = scores[i] | |
qa = self._make_dict( | |
generated_questions[index].split('?')[0] + '?', | |
qg_answers[index]) | |
qa_list.append(qa) | |
return qa_list | |
def _get_all_qa_pairs(self, generated_questions, qg_answers): | |
qa_list = [] | |
for i in range(len(generated_questions)): | |
qa = self._make_dict( | |
generated_questions[i].split('?')[0] + '?', | |
qg_answers[i]) | |
qa_list.append(qa) | |
return qa_list | |
def _make_dict(self, question, answer): | |
qa = {} | |
qa['question'] = question | |
qa['answer'] = answer | |
return qa | |
class QAEvaluator(): | |
def __init__(self, model_dir=None): | |
QAE_PRETRAINED = 'iarfmoose/bert-base-cased-qa-evaluator' | |
self.SEQ_LENGTH = 512 | |
self.device = torch.device('cpu') | |
# self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.qae_tokenizer = AutoTokenizer.from_pretrained(QAE_PRETRAINED) | |
self.qae_model = AutoModelForSequenceClassification.from_pretrained(QAE_PRETRAINED) | |
self.qae_model.to(self.device) | |
def encode_qa_pairs(self, questions, answers): | |
encoded_pairs = [] | |
for i in range(len(questions)): | |
encoded_qa = self._encode_qa(questions[i], answers[i]) | |
encoded_pairs.append(encoded_qa.to(self.device)) | |
return encoded_pairs | |
def get_scores(self, encoded_qa_pairs): | |
scores = {} | |
self.qae_model.eval() | |
with torch.no_grad(): | |
for i in range(len(encoded_qa_pairs)): | |
scores[i] = self._evaluate_qa(encoded_qa_pairs[i]) | |
return [k for k, v in sorted(scores.items(), key=lambda item: item[1], reverse=True)] | |
def _encode_qa(self, question, answer): | |
if type(answer) is list: | |
for a in answer: | |
if a['correct']: | |
correct_answer = a['answer'] | |
else: | |
correct_answer = answer | |
return self.qae_tokenizer( | |
text=question, | |
text_pair=correct_answer, | |
pad_to_max_length=True, | |
max_length=self.SEQ_LENGTH, | |
truncation=True, | |
return_tensors="pt" | |
) | |
def _evaluate_qa(self, encoded_qa_pair): | |
output = self.qae_model(**encoded_qa_pair) | |
return output[0][0][1] | |
def print_qa(qa_list, show_answers=True): | |
for i in range(len(qa_list)): | |
space = ' ' * int(np.where(i < 9, 3, 4)) # wider space for 2 digit q nums | |
print('{}) Q: {}'.format(i + 1, qa_list[i]['question'])) | |
answer = qa_list[i]['answer'] | |
# print a list of multiple choice answers | |
if type(answer) is list: | |
if show_answers: | |
print('{}A: 1.'.format(space), | |
answer[0]['answer'], | |
np.where(answer[0]['correct'], '(correct)', '')) | |
for j in range(1, len(answer)): | |
print('{}{}.'.format(space + ' ', j + 1), | |
answer[j]['answer'], | |
np.where(answer[j]['correct'] == True, '(correct)', '')) | |
else: | |
print('{}A: 1.'.format(space), | |
answer[0]['answer']) | |
for j in range(1, len(answer)): | |
print('{}{}.'.format(space + ' ', j + 1), | |
answer[j]['answer']) | |
print('') | |
# print full sentence answers | |
else: | |
if show_answers: | |
print('{}A:'.format(space), answer, '\n') |