|
import gradio as gr |
|
import requests |
|
import os |
|
import numpy as np |
|
import pandas as pd |
|
import io |
|
|
|
from questiongenerator import QuestionGenerator |
|
|
|
qg = QuestionGenerator() |
|
|
|
|
|
def generate_questions(article,num_que): |
|
result = '' |
|
if num_que == None or num_que == '': |
|
num_que = 5 |
|
else: |
|
num_que = num_que |
|
generated_questions_list = qg.generate(article, num_questions=int(num_que)) |
|
summarized_data = { |
|
"generated_questions" : generated_questions_list |
|
} |
|
generated_questions = summarized_data.get("generated_questions",'') |
|
for q in generated_questions: |
|
result = result + q + '\n' |
|
return result |
|
|
|
|
|
inputs=gr.Textbox(lines=5, label="Article/Text",elem_id="inp_div") |
|
total_que = gr.Textbox(label="Number of Question want to generate",elem_id="inp_div") |
|
outputs=gr.Textbox(lines=5, label="Generated Questions",elem_id="inp_div") |
|
|
|
demo = gr.Interface( |
|
generate_questions, |
|
[inputs,total_que], |
|
outputs, |
|
title="Question Generation using T5", |
|
description="Feel free to give your feedback", |
|
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #7FB3D5;" |
|
) |
|
demo.launch(enable_queue = False) |
|
|