Spaces:
Running
Running
File size: 16,726 Bytes
80ebd45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
from os.path import dirname, join, basename, isfile
from tqdm import tqdm
from models import SyncNet_color as SyncNet
from models import Wav2Lip, Wav2Lip_disc_qual
import audio
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
import torch.backends.cudnn as cudnn
from torch.utils import data as data_utils
import numpy as np
from glob import glob
import os, random, cv2, argparse
from hparams import hparams, get_image_list
parser = argparse.ArgumentParser(description='Code to train the Wav2Lip model WITH the visual quality discriminator')
parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True, type=str)
parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str)
parser.add_argument('--syncnet_checkpoint_path', help='Load the pre-trained Expert discriminator', required=True, type=str)
parser.add_argument('--checkpoint_path', help='Resume generator from this checkpoint', default=None, type=str)
parser.add_argument('--disc_checkpoint_path', help='Resume quality disc from this checkpoint', default=None, type=str)
args = parser.parse_args()
global_step = 0
global_epoch = 0
use_cuda = torch.cuda.is_available()
print('use_cuda: {}'.format(use_cuda))
syncnet_T = 5
syncnet_mel_step_size = 16
class Dataset(object):
def __init__(self, split):
self.all_videos = get_image_list(args.data_root, split)
def get_frame_id(self, frame):
return int(basename(frame).split('.')[0])
def get_window(self, start_frame):
start_id = self.get_frame_id(start_frame)
vidname = dirname(start_frame)
window_fnames = []
for frame_id in range(start_id, start_id + syncnet_T):
frame = join(vidname, '{}.jpg'.format(frame_id))
if not isfile(frame):
return None
window_fnames.append(frame)
return window_fnames
def read_window(self, window_fnames):
if window_fnames is None: return None
window = []
for fname in window_fnames:
img = cv2.imread(fname)
if img is None:
return None
try:
img = cv2.resize(img, (hparams.img_size, hparams.img_size))
except Exception as e:
return None
window.append(img)
return window
def crop_audio_window(self, spec, start_frame):
if type(start_frame) == int:
start_frame_num = start_frame
else:
start_frame_num = self.get_frame_id(start_frame)
start_idx = int(80. * (start_frame_num / float(hparams.fps)))
end_idx = start_idx + syncnet_mel_step_size
return spec[start_idx : end_idx, :]
def get_segmented_mels(self, spec, start_frame):
mels = []
assert syncnet_T == 5
start_frame_num = self.get_frame_id(start_frame) + 1 # 0-indexing ---> 1-indexing
if start_frame_num - 2 < 0: return None
for i in range(start_frame_num, start_frame_num + syncnet_T):
m = self.crop_audio_window(spec, i - 2)
if m.shape[0] != syncnet_mel_step_size:
return None
mels.append(m.T)
mels = np.asarray(mels)
return mels
def prepare_window(self, window):
# 3 x T x H x W
x = np.asarray(window) / 255.
x = np.transpose(x, (3, 0, 1, 2))
return x
def __len__(self):
return len(self.all_videos)
def __getitem__(self, idx):
while 1:
idx = random.randint(0, len(self.all_videos) - 1)
vidname = self.all_videos[idx]
img_names = list(glob(join(vidname, '*.jpg')))
if len(img_names) <= 3 * syncnet_T:
continue
img_name = random.choice(img_names)
wrong_img_name = random.choice(img_names)
while wrong_img_name == img_name:
wrong_img_name = random.choice(img_names)
window_fnames = self.get_window(img_name)
wrong_window_fnames = self.get_window(wrong_img_name)
if window_fnames is None or wrong_window_fnames is None:
continue
window = self.read_window(window_fnames)
if window is None:
continue
wrong_window = self.read_window(wrong_window_fnames)
if wrong_window is None:
continue
try:
wavpath = join(vidname, "audio.wav")
wav = audio.load_wav(wavpath, hparams.sample_rate)
orig_mel = audio.melspectrogram(wav).T
except Exception as e:
continue
mel = self.crop_audio_window(orig_mel.copy(), img_name)
if (mel.shape[0] != syncnet_mel_step_size):
continue
indiv_mels = self.get_segmented_mels(orig_mel.copy(), img_name)
if indiv_mels is None: continue
window = self.prepare_window(window)
y = window.copy()
window[:, :, window.shape[2]//2:] = 0.
wrong_window = self.prepare_window(wrong_window)
x = np.concatenate([window, wrong_window], axis=0)
x = torch.FloatTensor(x)
mel = torch.FloatTensor(mel.T).unsqueeze(0)
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1)
y = torch.FloatTensor(y)
return x, indiv_mels, mel, y
def save_sample_images(x, g, gt, global_step, checkpoint_dir):
x = (x.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
g = (g.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
gt = (gt.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
refs, inps = x[..., 3:], x[..., :3]
folder = join(checkpoint_dir, "samples_step{:09d}".format(global_step))
if not os.path.exists(folder): os.mkdir(folder)
collage = np.concatenate((refs, inps, g, gt), axis=-2)
for batch_idx, c in enumerate(collage):
for t in range(len(c)):
cv2.imwrite('{}/{}_{}.jpg'.format(folder, batch_idx, t), c[t])
logloss = nn.BCELoss()
def cosine_loss(a, v, y):
d = nn.functional.cosine_similarity(a, v)
loss = logloss(d.unsqueeze(1), y)
return loss
device = torch.device("cuda" if use_cuda else "cpu")
syncnet = SyncNet().to(device)
for p in syncnet.parameters():
p.requires_grad = False
recon_loss = nn.L1Loss()
def get_sync_loss(mel, g):
g = g[:, :, :, g.size(3)//2:]
g = torch.cat([g[:, :, i] for i in range(syncnet_T)], dim=1)
# B, 3 * T, H//2, W
a, v = syncnet(mel, g)
y = torch.ones(g.size(0), 1).float().to(device)
return cosine_loss(a, v, y)
def train(device, model, disc, train_data_loader, test_data_loader, optimizer, disc_optimizer,
checkpoint_dir=None, checkpoint_interval=None, nepochs=None):
global global_step, global_epoch
resumed_step = global_step
while global_epoch < nepochs:
print('Starting Epoch: {}'.format(global_epoch))
running_sync_loss, running_l1_loss, disc_loss, running_perceptual_loss = 0., 0., 0., 0.
running_disc_real_loss, running_disc_fake_loss = 0., 0.
prog_bar = tqdm(enumerate(train_data_loader))
for step, (x, indiv_mels, mel, gt) in prog_bar:
disc.train()
model.train()
x = x.to(device)
mel = mel.to(device)
indiv_mels = indiv_mels.to(device)
gt = gt.to(device)
### Train generator now. Remove ALL grads.
optimizer.zero_grad()
disc_optimizer.zero_grad()
g = model(indiv_mels, x)
if hparams.syncnet_wt > 0.:
sync_loss = get_sync_loss(mel, g)
else:
sync_loss = 0.
if hparams.disc_wt > 0.:
perceptual_loss = disc.perceptual_forward(g)
else:
perceptual_loss = 0.
l1loss = recon_loss(g, gt)
loss = hparams.syncnet_wt * sync_loss + hparams.disc_wt * perceptual_loss + \
(1. - hparams.syncnet_wt - hparams.disc_wt) * l1loss
loss.backward()
optimizer.step()
### Remove all gradients before Training disc
disc_optimizer.zero_grad()
pred = disc(gt)
disc_real_loss = F.binary_cross_entropy(pred, torch.ones((len(pred), 1)).to(device))
disc_real_loss.backward()
pred = disc(g.detach())
disc_fake_loss = F.binary_cross_entropy(pred, torch.zeros((len(pred), 1)).to(device))
disc_fake_loss.backward()
disc_optimizer.step()
running_disc_real_loss += disc_real_loss.item()
running_disc_fake_loss += disc_fake_loss.item()
if global_step % checkpoint_interval == 0:
save_sample_images(x, g, gt, global_step, checkpoint_dir)
# Logs
global_step += 1
cur_session_steps = global_step - resumed_step
running_l1_loss += l1loss.item()
if hparams.syncnet_wt > 0.:
running_sync_loss += sync_loss.item()
else:
running_sync_loss += 0.
if hparams.disc_wt > 0.:
running_perceptual_loss += perceptual_loss.item()
else:
running_perceptual_loss += 0.
if global_step == 1 or global_step % checkpoint_interval == 0:
save_checkpoint(
model, optimizer, global_step, checkpoint_dir, global_epoch)
save_checkpoint(disc, disc_optimizer, global_step, checkpoint_dir, global_epoch, prefix='disc_')
if global_step % hparams.eval_interval == 0:
with torch.no_grad():
average_sync_loss = eval_model(test_data_loader, global_step, device, model, disc)
if average_sync_loss < .75:
hparams.set_hparam('syncnet_wt', 0.03)
prog_bar.set_description('L1: {}, Sync: {}, Percep: {} | Fake: {}, Real: {}'.format(running_l1_loss / (step + 1),
running_sync_loss / (step + 1),
running_perceptual_loss / (step + 1),
running_disc_fake_loss / (step + 1),
running_disc_real_loss / (step + 1)))
global_epoch += 1
def eval_model(test_data_loader, global_step, device, model, disc):
eval_steps = 300
print('Evaluating for {} steps'.format(eval_steps))
running_sync_loss, running_l1_loss, running_disc_real_loss, running_disc_fake_loss, running_perceptual_loss = [], [], [], [], []
while 1:
for step, (x, indiv_mels, mel, gt) in enumerate((test_data_loader)):
model.eval()
disc.eval()
x = x.to(device)
mel = mel.to(device)
indiv_mels = indiv_mels.to(device)
gt = gt.to(device)
pred = disc(gt)
disc_real_loss = F.binary_cross_entropy(pred, torch.ones((len(pred), 1)).to(device))
g = model(indiv_mels, x)
pred = disc(g)
disc_fake_loss = F.binary_cross_entropy(pred, torch.zeros((len(pred), 1)).to(device))
running_disc_real_loss.append(disc_real_loss.item())
running_disc_fake_loss.append(disc_fake_loss.item())
sync_loss = get_sync_loss(mel, g)
if hparams.disc_wt > 0.:
perceptual_loss = disc.perceptual_forward(g)
else:
perceptual_loss = 0.
l1loss = recon_loss(g, gt)
loss = hparams.syncnet_wt * sync_loss + hparams.disc_wt * perceptual_loss + \
(1. - hparams.syncnet_wt - hparams.disc_wt) * l1loss
running_l1_loss.append(l1loss.item())
running_sync_loss.append(sync_loss.item())
if hparams.disc_wt > 0.:
running_perceptual_loss.append(perceptual_loss.item())
else:
running_perceptual_loss.append(0.)
if step > eval_steps: break
print('L1: {}, Sync: {}, Percep: {} | Fake: {}, Real: {}'.format(sum(running_l1_loss) / len(running_l1_loss),
sum(running_sync_loss) / len(running_sync_loss),
sum(running_perceptual_loss) / len(running_perceptual_loss),
sum(running_disc_fake_loss) / len(running_disc_fake_loss),
sum(running_disc_real_loss) / len(running_disc_real_loss)))
return sum(running_sync_loss) / len(running_sync_loss)
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch, prefix=''):
checkpoint_path = join(
checkpoint_dir, "{}checkpoint_step{:09d}.pth".format(prefix, global_step))
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
torch.save({
"state_dict": model.state_dict(),
"optimizer": optimizer_state,
"global_step": step,
"global_epoch": epoch,
}, checkpoint_path)
print("Saved checkpoint:", checkpoint_path)
def _load(checkpoint_path):
if use_cuda:
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path,
map_location=lambda storage, loc: storage)
return checkpoint
def load_checkpoint(path, model, optimizer, reset_optimizer=False, overwrite_global_states=True):
global global_step
global global_epoch
print("Load checkpoint from: {}".format(path))
checkpoint = _load(path)
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
if not reset_optimizer:
optimizer_state = checkpoint["optimizer"]
if optimizer_state is not None:
print("Load optimizer state from {}".format(path))
optimizer.load_state_dict(checkpoint["optimizer"])
if overwrite_global_states:
global_step = checkpoint["global_step"]
global_epoch = checkpoint["global_epoch"]
return model
if __name__ == "__main__":
checkpoint_dir = args.checkpoint_dir
# Dataset and Dataloader setup
train_dataset = Dataset('train')
test_dataset = Dataset('val')
train_data_loader = data_utils.DataLoader(
train_dataset, batch_size=hparams.batch_size, shuffle=True,
num_workers=hparams.num_workers)
test_data_loader = data_utils.DataLoader(
test_dataset, batch_size=hparams.batch_size,
num_workers=4)
device = torch.device("cuda" if use_cuda else "cpu")
# Model
model = Wav2Lip().to(device)
disc = Wav2Lip_disc_qual().to(device)
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
print('total DISC trainable params {}'.format(sum(p.numel() for p in disc.parameters() if p.requires_grad)))
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad],
lr=hparams.initial_learning_rate, betas=(0.5, 0.999))
disc_optimizer = optim.Adam([p for p in disc.parameters() if p.requires_grad],
lr=hparams.disc_initial_learning_rate, betas=(0.5, 0.999))
if args.checkpoint_path is not None:
load_checkpoint(args.checkpoint_path, model, optimizer, reset_optimizer=False)
if args.disc_checkpoint_path is not None:
load_checkpoint(args.disc_checkpoint_path, disc, disc_optimizer,
reset_optimizer=False, overwrite_global_states=False)
load_checkpoint(args.syncnet_checkpoint_path, syncnet, None, reset_optimizer=True,
overwrite_global_states=False)
if not os.path.exists(checkpoint_dir):
os.mkdir(checkpoint_dir)
# Train!
train(device, model, disc, train_data_loader, test_data_loader, optimizer, disc_optimizer,
checkpoint_dir=checkpoint_dir,
checkpoint_interval=hparams.checkpoint_interval,
nepochs=hparams.nepochs)
|